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Abstract 

An artificial neural network is presented which performs the task of integrating discontinuity 

and displacement information to produce an estimate of displacement which is robust in 

portions of the image containing discontinuous motion. The behavior of the algorithm is 

learned from a series of randomly generated examples, and demonstrates that the necessary 

constraints required to perform fundamental visual computation can be extracted directly 

from a series of random images. By phrasing the problem as a machine-learning problem 

we are able to give explicitly the optimality criteria (given by the learning rule), without 

making explicit assumptions on the image features necessary to perform the computation. 

The motion primitives consist of the sum-of-squared-differences (SSD) values over a set 

of oriented rectangular support regions. A set of related measures, called shear values, 

are used to detect the position and orientation of discontinuities in the displacement field. 

By using a set of support regions which vary in shape and size, the algorithm is able to 

exploit the discontinuity information and choose the support region which best captures the 

underlying motion of the region. 

The resulting algorithm is compared to the traditional SSD algorithm with a single 

square support region, using both natural and synthetic images. Analysis of the algorithm 

indicates the neural network is able to reduce the distortion effects occurring near disconti­

nuities and produces object boundaries which are significantly better representations of the 

object's true structure. The computed displacements show the neural network is able to 

interpolate over the SSD surface to produce displacements which are within sub-pixel ac­

curacy. Additional confidence measures are given for the neural network and are compared 

to the traditional SSD algorithm. 
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Chapter 1 

Introduction 

Vision is our most important sense. It provides us with a remarkable amount of information 

enabling us to understand and react intelligently to our environment. It allows us to ascertain 

the position, orientation, and depth of objects, and does so passively. It is not surprising 

therefore that so much effort in artificial intelligence has been made to enable machines to see. 

The lowest level of visual processing is the sampling of the visual image into a collection of 

discrete intensity values called pixels. Low-level visual tasks, such as edge detection, operate 

on these pixel values directly to create higher-level constructs such as edges and curves [Hil85, 

Can86, LB85]. Higher-level visual tasks operate on these low-level constructs to produce a 

description of the scene in terms of position, orientation, and depth of individual objects. 

The majority of the successes in computational vision have been at the lower-level visual 

tasks such as edge detection. While debate continues as to the organization of the intermediate 

and higher-level visual tasks, one thing is clear; it is an extremely difficult and complicated 

task. This complexity is confirmed when one looks at the structure and size of the visual cortex 

of mammals. The total amount of neural hardware devoted to vision, as well as its intricate 

structure, affirms both its importance to survival, and the complexity of the process [MN87]. 

The relatively modest success of higher-level visual tasks is due in part to the imaging 

process. The projection of a three-dimensional scene of light intensities onto a two dimensional 

image destroys all depth information. In addition some structures in the image may occlude 

others leaving an image with many ambiguities which must be resolved. 

1 
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1.1 Depth Cues 

The reconstruction of the depth information from one or more images is a very difficult problem. 

It is not surprising therefore that a large number of visual "cues" must be used to achieve 

this goal. Two of these cues, binocular stereo and depth from motion, are described below. 

Binocular stereo and optical flow are similar in that they deal with a one dimensional and two 

dimensional apparent motion, respectively. Therefore much of the theory presented here will 

be equally applicable to both problems, however, to simplify the implementation, the algorithm 

presented here will concern the simpler problem of binocular stereo. 

1.1.1 Binocular Stereo 

The most intuitive of these cues is binocular stereo which uses two separate images taken from 
different perspectives. The difference in perspective induces a disparity between features of one 
image and the other. By knowing the geometry of the imaging system, one is able to solve for 
the depth of a feature given its relative displacement [Hor86]. 

Object 
P0 = (x,y,z) 

Figure 1.1: Geometry for the recovery of depth from stereopsis 

To illustrate this process, consider a system of two rigidly mounted cameras whose optical 

axes are parallel, and are separated by a distance b (see Fig. 1.1). Assume also that the focal 

length of each camera is / . The line which passes through the center of each lens is called the 

baseline. In order to simplify the computation the baseline is taken to be perpendicular to both 
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optical axes, and parallel to the x-axis. Denote by Pa = (x,y, z) the coordinates of the point 

in the scene relative to the origin placed on the baseline halfway between both lens centers. 

Provided the point PQ is visible to both cameras, two image points (x/, y>) and (xr,yr) will be 

produced in the left and right images, respectively. Such a pair of points is called a conjugate 

pair. From the geometry of the system 

xi x + 6/2 xr x — b/2 Vl _VT V 
J = ~~z ' J = ~~z ' a n

 J = l = ~z' 

We may now compute the disparity, D, of the two points by taking the difference 

D = xi — xr = —. 
z 

Knowing both b and / allows us to solve for x, y, and z: 

b(xi + xr) b(yi + yr) D x = —r , y = — , and z - —. 
2D ' y 2D ' bf 

This shows that the disparity of a conjugate pair is inversely proportional to the depth. This 

implies that the depth of nearby points may be measured accurately, while those further away 

are more prone to error. 

The determination of depth from a two stereo images as described above presupposes the 

existence of a dense set of conjugate pairs. But how are these pairs obtained from the two 

images? This problem is named the image correspondence problem. If we assume that the 

brightness of a given point does not change from the left and right images, then we are faced 

with matching a point in one image to a corresponding point in the other which has the same 

(or nearly the same) brightness. The actual brightness of the point may differ in the right and 

left images due to noise in the sampling process, self-illumination, and other phenomena. 

There are many problems with this approach. First, the brightness value may have many 

potential matches in the second image. The process of choosing the best match among these 

points cannot be computed from purely local brightness information. This is similar to the 

aperture problem in optical flow computation (discussed further in §1.1.2). Regions in the image 

with little brightness variation will also give rise to false matches in the image. Additionally 

there may be regions in the image (called occlusions) which are only visible from one of the two 
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cameras making the matching impossible. Because local brightness information is unable to 

sufficiently constrain the correspondence of points in the stereo images, additional constraints 

must be added to obtain a unique solution. These constraints include assumptions on the nature 

of the displacement, as well as the shape of the objects in the scene. The types of constraints 

which are often employed in binocular stereo and optical flow are discussed further in §1.3. 

1.1.2 Optical Flow 

In addition to the computation of the depth information directly from stereopsis, depth infor­

mation may also be recovered from other less obvious cues, the most noteworthy being the use 

of optical flow. 

When a point in the environment moves, or the observer is moving relative to a point, there 

is a corresponding motion induced in the image. If we define a motion field that assigns a 

three-dimensional velocity vector to each point in the scene, then the apparent motion induced 

in the image is called the optical flow. While there are pathological cases where the optical flow 

does not reflect the true motion of the scene, the optical flow generally corresponds closely to 

the true motion field [HS81]. 

If we are given two images taken over a relatively short interval of time, the optical flow 

field is a mapping in which each pixel is given a vector which indicates the apparent motion in 

the image. Suppose we are given two images, denoted Io(x,y) and I\(x,y), taken at two times 

to and t\, respectively, and we wish to find the optical flow for a point P at tQ. If to and ti 

are sufficiently close together, we may assume that the brightness of a given point in the image 

remains constant. If we further assume that the magnitude of the optical flow is relatively 

small, and that the brightness values near the point P vary continuously, the problem reduces 

to finding a point in Ii near P which has the same brightness value as P. Let CQ and Ci denote 

the iso-brightness contours of brightness values equal to that at point P (see Fig. 1.2). 

We are faced with picking a point along Ci near the point P. The problem of choosing an 

individual point along the contour Ci is difficult since, in general, these contours will not even 

have the same shape [VP86]. 

This problem of choosing the correct point along the iso-brightness contour is called the 
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Figure 1.2: Iso-brightness contours of an image at times to and t\. 

aperture problem [MU81]. This problem states that local variations in the brightness values 

does not uniquely determine the optical flow. Local brightness information is only able to 

determine the component of the optical flow which is perpendicular to the image gradient. 

The component of the optical flow which is parallel to the image gradient (i.e., along the iso-

brightness contour of that point) cannot be recovered locally [Hor86]. In some points in the 

image (such as the corner of an object) it may possible to recover both components of the 

motion, but for cases where the local image structure is one dimensional (such as an edge of an 

object) only one component can be recovered1. 

Additionally, relaxing the brightness constancy to allow variation due to changes in illu­

mination, or dealing with occlusions will greatly increase the complexity of our task. More 

fundamentally, since local information is not able to determine a unique solution, additional 

constraints must be placed on the images. It is mostly the choice of these constraints which 

characterizes the performance of an optical flow algorithm. The issues related to the choice for 

constraints will be further discussed later in §1.3. 

Once the optical flow is computed, it gives us a great deal of information about the scene. 

The process of determining depth from a motion field is called motion parallax and is perhaps the 

most fundamental of all monocular cues of depth. Motion fields contain the least assumption-

laden information of the layout of the scene and allow the recovery of both the slant of surfaces 

[KD76], and the relative distances of features [NL74]. A detailed description of additional 

'As we shall see in §1.3.1, the use of smoothness constraints such as in Horn-Schunck's optical flow algorithm 
always gives rise to the aperture problem since the gradients only provide one constraint for the two degree of 
freedom motion field. 
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information which can be obtained from the motion field is found in [Nak85]. 

1.1.3 Other Cues 

Shading information of an object may also be used to recover the orientation of an object, 

provided knowledge of the light source and the surface characteristics of the object are known. 

The image irradiance equation of an object is a function which gives the relationship of surface 

brightness to surface orientation. The reflectance map depends on the properties of the surface 

material, as well as the distribution of light sources. This relationship is usually denoted as 

E(x,y) = R(p,q) 

where (x, y) is the position of the point, and p and q give the orientation of the surface at that 

point [Hor86]. p and q correspond to the gradients of the surface in the x and y directions, 

respectively. 

For example, a Lambertian surface illuminated by a point source at the same place as the 

viewer is given by 

E(x,y) = R(p,q) = (l+p2 + q2)-1'2. 

From the reflectance map, a single image is only able to recover the surface orientation for 

a few points such as the points where the brightness is at a maximum or minimum. Because 

brightness has only one degree of freedom, and surface orientation has two, the reflectance map 

will not uniquely determine the surface orientation. If however one were to take two images 

at the same viewpoint under two different sources of illumination, a unique surface orientation 

may be obtained. This process is called photometric stereo [Woo78]. An excellent description 

of shape from shading and photometric stereo is found in [Hor75]. 

1.2 The Image Correspondence Problem 

Of these cues for depth information, optical flow and binocular stereo are the most closely 

related. The similarity stems from the fact that both problems involve solving for the relative 
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displacement between features of two images. This problem is known as the image correspon­

dence problem. Methods for solving the correspondence problem fall into two categories which 

will be referred to as continuous methods and feature-based methods. 

Continuous methods are based on mechanisms which treat the images as a continuous three-

dimensional spatiotemporal function. The motion of the scene corresponds to characteristic 

mathematical properties of the spatiotemporal image function which can be extracted by simple 

linear niters. While these properties can be described in a number of ways, they are often 

mathematically equivalent. One example of this type of approach is the use of Gabor functions 

which are sensitive to motion occurring at a particular direction and velocity [AB85]. It has 

been demonstrated that a set of six such niters are able estimate the local components of 2D 

translation, divergence, curl, and the shear/deformations which span the six degrees of freedom 

of 2D image motion resulting from 3D rigid-body motion [Eag91]. 

Feature-based methods differ in that they do not directly deal with the images at the level 

of individual intensity values, but rather first process the images and extract a set of features. 

These features are then tracked over time to obtain the estimate of the motion or disparity field. 

These features are usually edges or comers as they have a high likelihood of being relevent to 

objects in the scene. An example of this approach can be found in [LM87]. 

Continuous methods have the advantage of being able to use information from each point in 

the image, whereas feature-based approaches are limited to locations where a feature is present. 

The advantage of feature-based approaches is that these features are generally more resilient 

to changes in illumination, self-illumination and other phenomena which cause difficulties in 

continuous methods. 

Regardless of whether continuous or feature-based methods are used to solve the correspon­

dence problem, both are under-constrained. We will now turn to the subject of additional 

constraints which may be placed on the images to obtain a unique solution to the correspon­

dence problem. 
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1.3 Constraints 

The fact that the determination of optical flow and binocular stereo are under-constrained does 

not mean that all is lost. Ambiguities occur frequently in natural scenes, yet we are still able to 

draw meaning from them. This is because we are able to place further constraints on the image 

enabling sensible interpretations of the scene. The challenge faced by researchers in computer 

vision is to develop further constraints which allow unique and accurate solutions for the types 

of scenes the vision system is expected to solve. 

While there are a large number of diverse algorithms for the computation of optical flow and 

binocular stereo, the most salient features of each are the choice of constraints used to further 

constrain the solutions. 

1.3.1 Smoothness of the Flow Field 

One intuitive constraint often employed in the computation of optical flow and stereo disparity 

is to enforce smoothness of the flow field [HS81, VP86]. This means that in addition to satisfying 

the constraints from the local brightness information, we should favor solutions in which the 

gradient of the flow is relatively small. This is certainly the case for rigid-body motion with the 

exception of regions near the boundary of an object. To illustrate this, let us denote the x and 

y components of the flow by u(x,y) and v(x,y), respectively. The process of enforcing locally 

smooth flow fields is often phrased as a regularization process of the Tikhonov type [PTK87]. 

The brightness constancy equation tells us that the total time derivative of the brightness is 

zero, i.e., ^ - = 0. If we use the following abbreviations 

dx dy dE „ dE , dE 
U=TV v = Tt' E' = W a n d E t = ^ 

then by the chain rule it follows that [FT79]: 

Exu + Eyv + Et = 0. (1.1) 

The Tikhonov stabilizer introduced in [HS81] allows a unique solution to be obtained 

(Exu + Eyv + Et)2 +X (ul + ul + v2

x + vl) dxdy. (1.2) 
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We now seek the value of (u, v) which minimizes this expression. The first term of Eqn. (1.2), ec, 

measures the residual of the optical flow constraint equation. This term gives us a measure of 

how well the choice of (u, v) corresponds to the local brightness information. The second term, 

es, measures the gradient of the optical flow and should be minimized to produce a smooth 

flow field. The parameter A allows a potential solution to tradeoff the error from the brightness 

data with the smoothness of the flow field. The choice for an appropriate value for A is crucial 

if the solution is to be useful. If A is too large then the detail of the flow field will be smeared 

and reduced to a constant vector which is close to the mean velocity of the region. If, on the 

other hand, A is too small, then the contribution of e3 to the regularization will be insufficient 

to adequately constrain the solution, and will only reflect the ec term. Under these conditions 

the solution will contain large velocity gradients. Although A is chosen empirically in practice, 

methods do exist to determine the optimal A value [TA77], but require careful analysis of the 

nature of the ill-posed problem. 

1.3.2 Correlation-Based Approaches 

One intuitive and popular choice of constraints is embodied in a class of algorithms called 

correlation-based techniques [Ana89, BLP87]. When the projected motion of an object is small 

relative to the image, it is possible to limit the search for correspondence to small regions in 

the image. This allows us to simply search for discrete values of (u(x,y),v(x,y)) E (±5, ±8) 

which minimizes Eqn. (1.2). For an N = (n x n) image we must choose a solution from a set of 

(26 + l)2N possible fields [BLP87]. While this entails an enormous computational complexity, 

many of these fields will be far from smooth and can be eliminated from the search by using 

further constraints. 

If we further assume that the objects are piecewise planar, and that the motion of the object 

is orthogonal to the viewing direction, then the image motion corresponding to a planar patch 

in the image will be constant over the projected area of the patch. We may now search for the 

correct displacement by choosing a small patch, P, centered at (x,y) and comparing it to the 

patches corresponding to each potential displacement. This reduces the number of potential 

vector fields which must be searched to (28 + l)2. The choice for the radius of each patch 
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(denoted £), as well as the magnitude of 6, depend on the scale of the objects in the scene as 

well as their expected velocities. Typically a patch of size (11 x 11) is sufficient for most images 

By choosing an appropriate function <f> to compare patches in the image, we may now 

construct an approximation to Eqn. (1.2) 

This search is often refered to as a shift-and-compare operation [BLP87]. 

It should be obvious that this approximation also minimizes the residual, ee, but we no 

longer have a smoothness measure to minimize. This constraint is implicitly contained in our 

assumption of frontoparallel piecewise-planar motion and our choice for the size of the patch. 

If our choice for £ is large, then we will impose a strong smoothness constraint on the flow field, 

while a smaller values enforces this constraint to a smaller degree. It should be noted that in 

regions where the motion is not frontoparallel translation, nor the surface planar, neither es nor 

ee are minimized and the approximation breaks down, and the results may be poor. Little and 

Verri have shown that for motion corresponding to non-frontoparallel the shift-and-compare 

operator is often still able to recover a good approximation of the true motion [LV88]. 

The choice of the comparison function (f> is often taken to be the sum-of-squared-differences 

(SSD), the sum of the absolute differences, or some similar measure. The total complexity of 

the shift-and-compare-operation now becomes \P\(6 + l ) 2 multiplications, where \P\ is the the 

total size of each patch (in pixels). In later experiments we will use the SSD as our comparison 

operator, but may use the more general term of "correlation" since the SSD gives a reasonable 

approximation of the cross-correlation. 

While this is a large solution space to search, the algorithm is easily parallelized [BLP87]. 

Consider a large number of fine-grain processors which are arranged in layers; one layer for 

each possible displacement. Each processor computes the comparison function, <f>, for its as­

signed displacement which may differ in magnitude and direction. The second step involves 

the collection of "votes" from each layer in a small circular region around each point in the 

image. The best displacement is chosen from the set of votes using non-maximal suppression. 

[BLP87]. 

(1.3) 
P 
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In regions where the motion is frontoparallel and coherent across the region, a large vote is ex­

pected. Displacement predictions are only obtained in regions where there is a clear winner; ties 

are discarded2. This approach to the computation of optical flow is similar to the Connection 

Machine™ implementation of the Marr-Poggio cooperative stereo algorithm [DP86]. 

There are a number of reasons why correlation-based techniques seem appropriate for the 

computation of optical flow and stereo. First, the shift-and-compare operation seems to capture 

the intuitive definition of what it means for two images to be in correspondence. There has 

also been a great deal of physiological and psychophysical evidence to indicate that correlation-

based approaches are indeed biologically motivated. Reichardt used a scheme similar to the 

correlation-based approached described above, and was able to fully characterize the optomotor 

responses of the fly [Rei61]. BiilthofF et al. have given psychophysical evidence which demon­

strates that this shift-and-compare strategy gives rise to behaviour similar to humans when 

confronted with illusions [BLP87], including the barber pole illusion, and the non-rigidity il­

lusion [NS88]. There is also some evidence to indicate that other mechanisms such as fusing 

of texture boundaries may play an important role in recovering depth from a set of images 

[Cav87]. 

1.3.3 Stereo Correlation 

While the above formulation is posed as an optical flow problem, the algorithm can be used to 

obtain disparity measures in binocular stereo with little modification [DP86]. This problem is 

easier since it reduces the search to a one dimensional space of potential displacements. This 

search space is one dimensional since an object which is imaged along an epipolar-line in the 

left image can only be imaged on the corresponding epipolar-line of the right image (if at all). 

Epipolar lines are the intersection of the image plane with a plane containing both lens centers 

[Hor86]. In practice the optics are usually arranged so that the epipolar lines are parallel to 

the x-axis, thus making the matching process easier. The conjugate-pairs are constructed by 

taking a planar region around each point, and matching it to a corresponding region in the 

alternate image along the corresponding epipolar line. An example of this type of approach can 
2 This will be refered to as the winner-take-all correlation-based algorithm. 
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be found in [Nis84]. 

1.3.4 Feature Based Correlation Methods 

While the shift-and-compare algorithm described above uses a comparison operator on the 

raw image intensities, such a scheme can also be applied to other image features. Drumheller 

and Poggio used the correlation of zero-crossings of the image to produce disparity measures 

[DP86]. A similar use of correlation on zero-crossings is used for the computation of optical 

flow [BLP87, Nis84]. 

1.4 Problems at Discontinuities 

The Horn-Schunck regularization, Eqn. (1.2), and the correlation-based assumptions of fron­

toparallel planar motion both exploit smoothness constraints to obtain a unique solution. While 

this is a reasonable assumption for most parts of real images, these assumptions clearly break 

down for points in the image which are close to the boundary of an object. In these regions the 

true motion field will contain discontinuities, which, when projected onto the imaging plane, 

induce a corresponding discontinuity in the flow field. Regions containing these discontinuities, 

because they violate the smoothness constraint, result in meaningless predictions for the appar­

ent motion. Consider a point p in an image corresponding to the boundary of of an object which 

is moving in a static background. Solving for the apparent displacement of p using Eqn. (1.2) 

requires estimations for the derivatives ux,uy,vx, and vy, which determine the departure from 

smoothness term es. At these points in the image neighboring points will be uncorrelated and 

hence Eqn. (1.1) is violated. Since the estimations of the derivatives require finite extent these 

values will become meaningless (often becoming extremely large). This causes the solution of 

the minimization to produce unrealistically smooth flow fields which poorly satisfy the optical 

flow constraint equation, and thus is not characteristic of the true motion. 

Similar problems at the discontinuities occur when using correlation-based approaches, al­

beit less severe. When attempting to match a small patch of an image located near a discon­

tinuity, we are in effect attempting to match a region which contains features from both the 
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object itself, and of the background. This situation is depicted in Fig. 1.3. This may result 

in one of two phenomenon: the error surface becomes bimodal [SU87], or the minimum of the 

error surface shifts due to "smearing" effects of the two separate distributions [LG90]. In the 

bimodal case, two significant minima (local minima significantly smaller than the remaining 

minima) arise, one representing the displacement of the object, and the other representing the 

displacement of the background. These two minima must be disambiguated before the actual 

displacement can be obtained. While we might decide to hedge our bets and pick the displace­

ment corresponding to the global minimum, there is no guarantee that this corresponds to the 

true motion. In fact, the relative error values for each minimum may depend more on the 

relative texture of the object and the background than the true displacement of the point. In 

the case where the error surface remains unimodal, the presence of the opposing motion may 

cause the minimum of the error surface to shift away from the true motion. 

spurious 
votes 

Figure 1.3: Support region near a discontinuity 

The presence of the discontinuity partitions 
the support region into a region of "good 
votes" representing the object, and a region 
of spurious votes. 

When either type of distortion of the error surface takes place, the apparent boundaries 

of the objects will become smeared. The flow for points on the objects near the boundaries 

may gravitate towards that of the boundary due to the averaging process of correlating over 

large regions. Correspondingly, the flow for points in the background near the object boundary 
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may gravitate towards that of the object. The magnitude of these distortion effects will be 

proportional to the radius of the patch used in the matching process. 

Thus we are faced with a dilemma: how do we choose an appropriate size for our support 

region (radius of the patch)? Larger patches are better able to accurately resolve the true 

apparent motion of the region, but only near coherent motion. Smaller patches, on the other 

hand are less likely to be distorted by the discontinuities, but are more susceptible to noise. 

In order to make reliable flow measurements in all portions of the image it will become 

necessary to first identify discontinuities in the flow field, and then to use this information to 

change dynamically both the size and the shape of the support region. This is a Catch-22 in 

that it is difficult to accurately locate discontinuities without reliable estimates of the flow. 

Likewise the flow estimates are difficult without localizing the discontinuities. 

1.5 Improving Correlation Measures Near Discontinuities 

Given knowledge of the discontinuities, one can improve the performance of the matching 

process by dynamically re-shaping the support region. Little and Gillett [LG90] propose using 

a set of five support regions which are obtained by bisecting the standard square region along 

the x and y axes (see Fig. 1.4). Denote by S = {R, i?„, R3, Rw, Re} this set of sub-neighborhoods, 

representing the north, south, west, and east orientations, respectively. 

R 
Rn 

R Re R 
Rs 

Re 

Figure 1.4: Set of 5 oriented rectilinear sub-neighborhoods 

By choosing the appropriate sub-neighborhood we may throw away the spurious votes and 

keep only those votes which correspond to the displacement of the object point. For example, 

when trying to determine the displacement for point p in Fig. 1.3, the choice of Re would omit 

all spurious votes and would enable a proper match. 
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This process, however, of choosing the appropriate sub-neighborhood presumes knowledge of 

both the location and orientation of the discontinuity. The process of locating the discontinuities 

can be achieved by comparing the motion predicted by each sub-neighborhood as suggested in 

[LG90]. In regions where the motion is coherent across the entire region, there will be a 

consensus among the sub-neighborhoods, while regions crossing a discontinuity will produce a 

conflict between at least two of the sub-neighborhoods. In addition to being able to detect the 

discontinuities, the orientation can also be recovered in most situations. This determination of 

the orientation of the discontinuity is discussed further in Chapter 3. 

We could propose to extend our set of support regions to include other orientations, such as 

the diagonals, as well as including support regions taken at different scales (as found in [Ana89]). 

This would likely allow a more accurate estimation of motion in the presence of discontinuities, 

but, in an effort to minimize the overall complexity of our algorithm the minimal set of 5 

sub-neighborhoods was chosen. 

1.6 Integration of Discontinuity and Motion Information 

Given a set of support regions (such as S) which vary in size and orientation, as well as 

knowledge of the location and orientation of the discontinuities in the image, the task remains 

to integrate these two sources of knowledge into a common framework which is able to respond 

dynamically to the presence of discontinuities and thereby enable accurate motion determination 

for all points in the image. 

The task of integrating visual knowledge from separate sources (also called visual modules) 

has been studied by a small number of vision researchers; the most notable being [Mar82, 

AS89, CY90]. Of special interest to our problem of integrating discontinuity and displacement 

information is the work of [PGL88] which used a stochastic process to integrate several early-

vision cues. The collection of outputs from the early-vision cues were modeled by a series of 

coupled Markov random fields (MRFs). By explicitly representing the discontinuities of the 

separate fields (depth, brightness, motion, etc.) as a line process, the discontinuity information 

can be used to help fuse the information from the separate modules. This coupling of the 
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discontinuities across separate visual modules is motivated by the observation that because the 

cues share a common imaging geometry, discontinuities will tend to be preserved across multiple 

modalities. 

The integration algorithm which is presented here differs from most traditional formalisms 

in that there is no explicit representation for the interaction of the separate modules, but in­

stead this representation is "learned" from a sequence of examples. This model is an example 

of a connectionist model and is described in the following sections along with a description of 

the learning algorithm employed. The term "connectionism" refers to a set of computational 

models which are composed of a large number of relatively simple computing engines which are 

interconnected in a highly parallel manner. These computing elements are usually constructed 

so as to simulate actual neurons (at some level). While many researchers are interested in 

connectionist models from a purely computational viewpoint, the main motivation for the de­

velopment and application of these models is their apparent ability to mimic human neuronal 

behaviour [MP43, Ros62]. An excellent introduction to connectionist models can be found in 

[HKP91]. A description of artificial neural networks (or connectionism) as well as a motivation 

for their use in computational vision is given in §1.7. 

Chapter 4 describes an implementation of a correlation-based algorithm which is able to 

extract the location and orientation of discontinuities in an image from the set of oriented 

sub-neighborhoods described above. This discontinuity information is then used to select the 

size and shape of the support region. Prom this dynamic selection of support, a more accurate 

estimation of motion can be obtained in regions containing discontinuities. By reducing the 

smoothing effects near the discontinuities a more accurate representation of an object's shape 

can be obtained. The overall structure of the proposed algorithm is shown in Fig. 1.5. 

1.7 Connectionist Models 

People have long been interested in the mechanics of brain activity. The capability of the brain 

to perform tasks such as pattern recognition, visual processing, and speech recognition are far 

superior to that of contemporary computers. As serial computers are pushed closer and closer 
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Image 2 

Image 1 
Sub-neighborhoods discontinuity 

information 

Integration 

Displacement 

Figure 1.5: Architecture of the integration algorithm 

to their theoretical limits, the search for a more powerful computational paradigm becomes 

more and more attractive. 

The basic unit of computation in artificial neural networks is the individual neuron. By 

examining the behaviour of individual neurons several researchers have proposed mathemati­

cal models which describe their behaviour [Ros62]. A neural network (artificial or real) is a 

collection of interconnected neurons. 

A neuron consists of three components: dendrite, cell body, and axon (see Fig. 1.6). The 

dendrites are the receptors of the neuron and collect nerve impulses from other neurons. The 

membrane of the neuron's cell membrane is capable of sustaining charge. When this charge 

reaches a certain threshold, the neuron will "fire". When this occurs a quick wave of depo­

larization spreads along the length of the outgoing axon where it will ultimately communicate 

to a neighboring neuron via the synapse which may be either excitatory or inhibitory. An im­

portant property of natural and artificial neural networks is the high degree of fan-out (called 

the dendritic tree) which allows a neuron to communicate to a large number of neighboring 

neurons. 

One of the first group of researchers to propose a model of the neuron and its interconnections 

was McCullough and Pitts [MP43] who viewed the behaviour of neurons in a boolean logic 

framework and proved that any logical proposition could be realized using their model. One 

of the few qualities of their model which has been generally accepted is the "all-or-nothing" 

response of the neurons. The next influential model of neuronal behaviour was the linear 

perceptron [Ros62]. This model used a set of weights to represent the synaptic strengths (positive 
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=0 

Figure 1.6: The anatomy of a neuron 

for excitatory and negative for inhibitory) for each of the inputs (usually a real number). Each 

input is multiplied by its corresponding weight and is summed. This sum is then compared to 

a threshold to produce a single boolean value. Rosenblatt went on to prove that the perceptron 

was able to compute a great many interesting functions, and perhaps more importantly, the 

existence of a learning procedure whereby the set of weights could be iteratively modified to 

arrive at a correct solution [Ros62]. Despite many successes the linear perceptron was found to 

have many limitations due to its linear behaviour (see [MP88] for details). 

The neuron model we shall adopt is a non-linear version of the perceptron introduced by 

Rosenblatt. This model does not have boolean valued outputs (like the linear perceptron), but 

instead has continuous real-valued output responses. Since neurons only permit two states, the 

outputs must now be interpreted as rates-of-fire over a small time interval. More will be said 

about this model in §1.8.2, but first let us outline the motivation for choosing a connectionist 

model for the problem at hand, as well as the advantages and limitations of such models. 

The most obvious motivation for developing our integration algorithm within a connection­

ist framework is to gain a degree of biological plausibility. By performing our computation using 

primitives which attempt to simulate the behaviour of individual neurons, there is a greater 

likelihood that the resulting computation could be performed by the brain. Secondly, connec­

tionist paradigms are interesting models of parallel computation. By examining the structure 
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and behaviour of these models we may gain insights into the parallel nature of the problem. 

The investigation of these models may also give insights for new heuristics which may be used 

to solve the problem using more traditional serial algorithms. 

1.7.1 Biological Plausibility 

The key justification for connectionist models stems from the observation that the basic brain 

functions can be described as computation [MP43, Mar82]. As an example, perception can be 

seen as the act of computing properties of the state of the world from the effects the state makes 

on sensory receptors. The nature of biological computation is very different from that of serial 

computation. While modern computers are able to perform individual calculations at a very fast 

rate, present von Neumann architectures perform serial computation. This serial computation 

means that at any given instant only a small fraction of the total available hardware is active. 

Neurons on the other hand are comparatively slow and are only able to transmit information at 

the rate of once every 5ms. The information the neuron is able to convey is limited to a few bits 

compared the to the intricate data structures which can be copied using pointer arithmetic in 

serial computers. In addition, the possible destinations a neuron is able to transmit is limited by 

its connections, which are fixed. The brain's ability to compute complex functions is achieved 

through massive parallelism which allows a much larger fraction of the total "hardware" of the 

brain to be active at a given time. The human brain contains approximately 1011 neurons, each 

of which is connected to as many as several thousand other neurons. 

Marr has provided an influential analysis of the issue of levels in cognitive science and has 

outlined three such levels in his theory3: 

Computational theory This includes the goal of the computation as well as the logic behind 

the strategy for carrying it out. 

Representation and Algorithm This contains the representation of the input and output 

as well as an algorithm to carry out the computation. 

Implementation How the algorithm will be physically realized. 
3 Note: Adapted from [Mar82]. 
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It has been argued that since connectionist and conventional models of computation are Turing-

equivalent, it does not matter whether we implement the algorithm using one model or the other. 

Comparing connectionist and conventional models of computation is similar to the comparison 

of an algorithm implemented using a high-level language specification such as Pascal, and a 

similar implementation in assembly language [RM86]. It is necessary to have the the assembly 

language program and the Pascal program map exactly only when the assembly language is 

obtained by compiling the Pascal source. If, however, the program is written in assembly 

language there is no guarantee that such a relationship will exist. In these cases it may be 

extremely difficult (or even impossible) to extract a higher-level interpretation of the underlying 

computation. Since there is a reason to believe that most cognitive processes (especially those 

relating to perception) are performed at the "lower-levels" rather than at the "higher-levels", it 

is unlikely that a particular high-level description of the computation will be identical to the low-

level description. We may attempt to capture an approximation of the lower-level computation 

in our high-level description, and indeed it might prove useful to do so, but there is no guarantee 

that this approximation will be adequate for the problem at hand. The Turing-equivalence 

argument also ignores the empirical fact that the choice of the programming paradigm greatly 

influences the way in which the researcher thinks about the problem, as well as the types of 

solutions generated. 

In some instances the interaction of a large number of computing elements may appear to 

cooperate to produce a computation which is greater than the sum of the elements [For90]. In 

such cases the overall behaviour of the system can only be viewed at the global rather than 

local level. This type of behaviour is called emergent computation and is eloquently discussed 

in [For90]. Lastly, this equivalence of connectionist and serial computation is a violation of the 

hundred-step-rule proposed in [FB82]. It has been determined by psychological experiments 

that humans take on the order of 500ms to perform complex visual tasks such as recognition. 

Knowing that a typical neuron takes approximately 5ms to fire and transmit its information to 

a neighboring neuron, we can establish an upper-bound for the total number of communication 

cycles to be about 100. If one is serious about developing computer vision algorithms which are 

biologically motivated, it is necessary to use a formalism which makes the number of iterations 
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explicit. 

1.8 Choosing the Connectionist Model 

There have been a number of connectionist models proposed since their revival in the early 

1980's. Each of these models has their own particular strengths and weaknesses within different 

domains. These models fall into three classes: detailed neuronal models, unstructured models 

(sometimes refered to as PDP models [RM86]), and structured models. 

The detailed neuronal model borrows heavily from experimental neuroscience to obtain a 

model which is as close to the true behaviour of the neuron as possible. For these models 

observed behaviours such as sensitivity to motion or orientation are mimicked. An excellent 

example of this style of work is found in [TP78]. 

PDP models have received the most attention of all the connectionist models to date. These 

models are often used for such tasks as pattern recognition and in other applications where the 

domain is poorly understood [RM86]. The work in these models concentrates strongly on 

mechanisms of learning rather than the exact modeling of individual neurons. Through the 

process of learning it is hoped that regularities of the input will be discovered and exploited to 

give rise to a robust solution. 

Structured models such as [FB82] have been utilized in problems where the unstructured 

PDP models appear to be too simplistic. The focus of this work is on the design of systems, 

where the connectionist model is used to constrain the design considerations. Analysis of the 

visual cortex has provide much of the motivation for the work in this area. 

1.8.1 Benefits of the PDP Model 

There are many benefits we may hope to exploit by using the unstructured PDP model [RM86]: 

The existence of a learning procedure. Since the nature of the problem is often not well 

defined, we are not able to exploit the detailed information of the biological systems and 

thus we are forced to use an unstructured PDP paradigm. By using the PDP model 

it is hoped that the structure and representation of the solution can be obtained from 
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the learning procedure. Supervised learning techniques find their solution by repeatedly 

modifying the connection strengths between each neuron so as to reduce some global error 

measurement [RH86]. 

Generalization of the input data. By discovering regularities in the input data, it is hoped 

that a solution which minimizes the global error measure of the learning examples will 

also perform well for inputs which have never been seen before. 

Resilience to noise and incomplete data Because of the large fan-in and fan-out of the 

individual neuron it is unlikely that a single stimulus will give rise to an action potential. 

This suggests that human computation does not involve the kind of logic circuits used 

in conventional symbolic computation, but must instead involve some sort of stochastic 

process. A consequence of the stability achieved through this stochastic process is a better 

ability to deal with noise in the input data. Additionally, omissions in the input data may 

still provide enough information of the true data to allow the correct action potentials to 

occur. 

Graceful degradation with damage. The effects of localized damage to artificial neural 

networks parallels that found in biological neural systems in that there is a gradual loss 

in ability due to damage [RM86]. In general, the degree of performance loss is roughly 

proportional to the total fraction of damage. In traditional paradigms of computation 

the loss in performance due to damage is very erratic. The negation of a single bit for 

example may cause no observable difference to the operation of the algorithm as long as 

the data is not used, or it may cause a complete failure. 

While these benefits seem encouraging, research on connectionist models have uncovered 

limitations regarding what can be represented and computed. These limitations arise from the 

following constraints of our model: 

• Once learning is completed the connection strengths are fixed and cannot be modified 

while the network is "running". 
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• Networks have to be extremely parallel to satisfy the one hundred step rule. This large 
degree of connectivity between the neurons gives rise to a correspondingly large compu­
tational complexity of the learning procedure. 

• The brain has a finite number of neurons. This has repercussions to network implemen­

tations of recursive constructs. While it has been argued in [RM86] that these recursive 

constructs are not necessarily needed for cognitive tasks, it does pose a constraint on the 

types of algorithms realizable. 

Now that the potential benefits and pitfalls of using the PDP model have been outlined, it 
is necessary to clearly define the model of computation. This model, the multilayer feed-forward 

non-linear perceptron, has many desirable properties which are described below. 

1.8.2 The Multilayer Feed-Forward Non-linear Perceptron 

The processing unit corresponding to the "idealized" neuron is depicted in Fig. 1.7 where the 

inputs are represented by Xj, and the output by y;. The output of the unit is computed by the 

function: 
n 

Vi = f((zZ xJwij)  +  bi)-
The values of Wij correspond to the strengths of the inhibitory/excitatory connections of the 

units synapses, bi is a bias term which has the effect of thresholding the input and acts as an 

implicit connection to an input of unity4. A common choice for the function /(•) is given by 

/(*) = TT-^ 1 + e x 

which gives us a non-linear output response to the input5. This non-linear property is important 

since it allows us to obtain additional computational power by adding additional layers of 

units. If the output response were linear then every multi-layer network could be realized by a 

corresponding single layer network6. 
4 This is similar to the linear-perceptron of [Ros62] with the addition of a nonlinearity. 
5 This function is often called the sigmoid or squashing function. 
6 As noted in [Dru84] there are other reasons why a motion detection model must be non-linear. This is further 

discussed in §2.3. 
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Figure 1.7: The idealized neuron 

By organizing these processing units into layers as in Fig. 1.8 we obtain the multi-layer 

feed-forward perceptron which is an extension of Rosenblatt's perceptron model. This network 

is composed of three parts: the input layer, one or more hidden layers, and a single output 

layer. The units of one layer are connected only to units of the next layer, and no connections 

are permitted within the same layer, or to previous layers. This ensures that the network is 

acyclic and allows for easy evaluation and learning. To evaluate the network, the inputs are 

presented to the input layer, and the activation cascades forward until the entire output vector 

is computed. 

Output Layer 

Hidden Layer 

Input Layer 

Figure 1.8: The multilayer feed-forward perceptron network 
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1.9 Learning Procedures 

The goal of any connectionist learning procedure is to obtain values for the weight parameters, 

Wij, which allow for an acceptable set of responses from the inputs. The search of the weight 

space for appropriate values of the weight parameters is made based on a collection of examples 

called the training set. Connectionist learning procedures fall into one of two possible categories: 

supervised and unsupervised learning. 

Supervised learning procedures act as an active "teacher" for the network. The training-set 

is composed of a set of input-output pairs corresponding to the desired outputs of the network. 

Given an initial set of weight values (usually random), the learning procedure systematically 

adjusts each weight in the network so as to obtain a better solution according to some function 

which characterizes the performance of the network over all training examples (such as the total 

squared error over all training sets). This type of learning procedure has been the most suc­

cessful so far, but does require that the ideal outputs are known before training can take place. 

An example of this type of learning procedure is called back-propagation which uses gradient-

descent to reduce the total squared error ofthe training examples [RH86]. This procedure (and 

variants thereof) is described in detail later in this section. This learning procedure is ideal for 

our application since the ideal outputs of the network (the true motion field) are known. 

Unsupervised learning procedures learn their representations based purely on the input val­

ues and therefore the training set does not contain a set of desired outputs. In this sense the 

learning procedure is not an active teacher. The representation of the network is constructed 

purely on information of the input distribution. By exploiting regularities in the input distri­

bution the network is able to classify the input vectors according to the most salient features 

of the input. This type of learning is appropriate when one does not have exact knowledge of 

the "correct" output of the network, or in cases where one wants to reduce the dimensionality 

of the input before further training is performed. One very powerful example of this type of 

learning is called competitive learning [Gro76] and has been shown to be a useful method of 

learning in many domains (especially pattern recognition problems). Other interesting unsuper­

vised learning techniques include Becker and Hinton's work [BH89] using information theoretic 
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measures on the input distribution, and Sanger's work [San89] which is closely related to prin­

ciple component analysis. An excellent introduction to unsupervised learning can be found in 

[RM86]. 

1.9.1 Back-propagation 

Given a training set of desired outputs, we may define a function E which gives the total squared 

error over all training examples: 

0 3 

where j denotes an individual output of a single training example c, with y^c and dj>c repre­

senting the computed and desired outputs, respectively [RH86]. 

To minimize this error measure, we may differentiate E and use gradient descent. The pro­

cess of using Eqn. (1.4) to perform gradient-descent is called back-propagation. The expression 

which gives the appropriate gradient is: 

dE 
Awij = -e-

dwij 

where e is a small scalar called the learning rate which scales the magnitude of the weight 

updates. By using the chain rule we may propagate these error derivatives from the output 

layer to each successive hidden layer to give the appropriate weight updates for each weight in 

the network. 

In cases where the current solution is located in a tough, we may get oscillatory behaviour 

as the solution "sloshes" back-and-forth with little progress parallel to the trough. This type of 

behaviour can be reduced by introducing a momentum term, M, as suggested in [PH87] which 

dampens the oscillations: 
dE 

Awitj(t) = -<Q^~ + M Awijit - 1)). (1.4) 

1.9.2 Convergence of Back-propagation 

There are, however, two potential pitfalls of this learning algorithm. Unlike the perceptron 

learning procedure [Ros62], there is no guarantee of convergence to the optimal solution since 
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the error surface may be concave resulting in local-minima which are inescapable using gradient-

based techniques. In practice such local minima rarely cause problems as the weight space is 

usually of sufficiently high dimensionality to allow escape in one of the dimensions. The second 

problem is that of computational complexity. Since the modification of a single weight in the 

network may change the entire error-surface, making it necessary to adjust all other weights 

in the network. This results in a potentially 0(2H) learning process7 where is the total 

number of weights in the network. In practice the worst-case 0(2H) time complexity is rarely 

encountered. Plaut and Hinton have empirically characterized the typical time complexity of 

the back-propagation algorithm as 0(|u;|3) [PH87], but this result should be taken with some 

caution since the time complexity is very dependent on the nature of the problem, and the 

representation of the inputs/outputs of the network. 

1.10 Constructing the Network 

Now that the details of the learning procedure have been outlined, there remain several other 
important issues that affect the network's ability to obtain a satisfactory solution. Some of 
these factors are described below: 

Topology of the network The most important factor which determines the ability of a net­

work to compute a particular function is the topology of the network. This includes the 

number of hidden units in the network, the placement of connections between the units, 

and the number of layers used. If insufficient numbers of hidden units are used the ap­

proximation to the ideal function will be poor. Adding more hidden units may increase 

the accuracy of the network but only if there are sufficient connections to the appropriate 

units. Care must be taken when choosing the number of hidden units as there is a point 

at which adding more hidden units results in a decrease in the network's ability to gen­

eralize. Therefore there is a tradeoff in the design of the network: too few hidden units 

results in a poor approximation of the idealfunction, too many result in a solution which 

"memorizes" the entire training set rather than obtaining a useful generalization of the 
7 Judd [Jud87] has shown that the general learning problem is NP-complete, but he goes on to say that a 

polynomial learning time may be achievable by placing restrictions on the network or on the problems. 
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input data. Additionally, the computational complexity of the network increases rapidly 

as the number of hidden units and connections increases. 

The representation of the input/output By choosing a connectionist model for our com­

putation we have not avoided the problems of data representation which plague traditional 

sequential algorithms. Although the network will internally contain a distributed repre­

sentation of the function, we still have a great number of options for the representation 

of the inputs and outputs of our network. Some of these schemes, while they may appear 

equivalent, may have a great effect on our ability to extract the relevent features of the 

input. If we choose to represent our ideal outputs in the training set in such a way that 

there is little apparent correlation to the input data, the learning procedure may take an 

unacceptably long time to terminate, or even worse, may fail altogether. For example, it 

is not obvious what representation would be best for texture segmentation. Do we use 

the raw image intensities as inputs, or do we use the fourier transform of the image or 

some other input? The answer to the question of how to represent the data requires that 

the designer be very aware of both the problem at hand, as well as the computational 

limitations of the network he/she is using. 

The construction of the training set An important issue concerning the construction of 

the training set is the choice for the size of the training set. This is a difficult concept 

to quantify since it is dependent on both the inherent complexity of the function (which 

is often not known), as well as the amount of information each training sample gives 

about the input distribution. A theoretical upper-bound on the number of examples 

needed for classification problems was given by [Hau90] as N > where e is the desired 

upper-bound on the number of errors due to mis-classification. While this seems like a 

pessimistic upper-bound, most problems will require substantially fewer examples due to 

regularities of the input distribution. 
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1.11 Thesis Layout 

Chapter 2 describes previous work in the areas of motion detection and the detection of dis­

continuities in images, and is included to give a historical perspective of the problem, as well as 

giving a framework for which the results of this thesis are to be compared. The important and 

very influential work of Reichardt [Rei61] is first presented in §2.1 and provides much of the 

motivation for the correlation-based approaches which will be investigated. The Horn-Schunck 

algorithm given in [HS81] is described in §2.2 and gives a good introduction to gradient-based 

techniques for the computation of optical flow, as well as giving a good introduction to regular-

ization theory. The work of Drumheller's synthesized one-dimensional motion detector [Dru84] 

is presented in §2.3. This work is similar to that of this thesis in that the solution is "learned" 

from a set of examples, but differs in the computational model and learning procedure em­

ployed. Lastly, the work of Spoerri and Ulmann [SU87] is given in §2.4. This work provides 

an alternative approach to the use of sub-neighborhoods to identify motion discontinuities in 

an image. This work also gives excellent background in the problem of discontinuity detection 

and discusses the relative merits of several approaches. 

Chapter 3 outlines the difficulties encountered at discontinuities when using a correlation-

based scheme, and illustrates a set of measures which may be used to extract useful disconti­

nuity information. The effects of texture in an image on the performance of correlation-based 

techniques is also demonstrated using synthetic images. 

Chapter 4 gives a description of the integration algorithm including a description of the 

structure of the neural network, the representation of the inputs and outputs of the network, 

and the generation of the training set. The training of a neural network for computing binocular 

stereo is presented in Chapter 5. The performance of the neural network is then analyzed, using 

both synthetic and natural images, and compared to the traditional winner-take-all algorithm. 

Chapters 6 and 7 give some concluding remarks on the analysis of the neural network, and 

suggest possible improvements and future directions of this research. 



Chapter 2 

Previous Work 

In this chapter we will review some of the models proposed for motion detection and the 

detection of discontinuities in an image. This will provide a historical perspective for the 

problem and will provide the tools necessary to understand and interpret the models presented 

in this thesis. 

2.1 Werner Reichardt's Minimal Model for Motion Detection 

One of the first and most influential models proposed for the detection of motion is described 

in [Rei61]. This model was used to characterize the optomotor responses of the Chloropahnus 

viridis beetle, and was later used to describe flies. 

This symmetric model (pictured in Fig. 2.9) operates on the principle that each of the two 

units (the left and right sides of the figure) computes (approximately) the auto-correlation of 

the brightness function, £(x), from their receptors1. The auto-correlation of the brightness 

functions, $^(r)2, is dependent on r, which is chosen depending on the velocity of the pattern, 

the distance As between the receptors, and the delay of the filters HA and HB- In cases where 

there is a significant peak in $^(T) there will be a correspondingly large peak in the response 

R. Thus R is said to be tuned for the velocity v. The sign of R will be the same as the velocity, 

v, but the magnitude of R may be disturbed by changes in contrast of the input pattern. 

' in the model, D, F, and H are linear filters, and MA and MB are multipliers. 5 is a low-pass filter which is 
used to approximate an infinite time averager. All functions L represent timing functions and can be ignored. In 
addition D is used to differentiate the brightness values and is included here for biological accuracy since most 
photo-receptors are sensitive to changes in illumination. This distinction is unimportant for our purposes. 

2 For a stationary signal £(x), $^((r) = E[£(x) — £(x — r)] where E[ ] is the expectation operator. 

30 
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For example, it may be possible that a low-contrast pattern which is moving at the "right" 

velocity (i.e., one for which r = 0) results in a response which is smaller in magnitude than a 

high-contrast pattern moving at the "wrong" velocity (i.e., a velocity for which r ^ 0). This 

problem, as noted in [HK86], is common to many biological systems. The actual determination 

of the correct velocity, v, is performed at a higher-level by comparing the responses from a set 

of motion receptors R, all tuned for different velocities. 

v — ( v e l o c i t y ) 

1 
-As-

T 
i. 

T 

Pattern 

Receptors 

Linear Biters 

Linear Filters 

Multiplication 

Units 

Linear Filters 
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time-averages) 

Subtraction Unit 

Response 

Correlation 

Units 

Figure 2.9: Reichardt's "minimal model" used to describe the optomotor response of the Chloro-
phanus viridis beetle. Redrawn from [Rei61] with minor notational modifications. 

A n important feature of this work is that it goes further than describing the behaviour of 

a single cell, but instead is able to characterize the optomotor response for the entire insect. 

Reichardt and his colleagues, through elaborate apparatuses, measured the tendency of the 

beetle to turn when presented with a moving stimulus. In these experiments the beetle was 
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suspended but free to rotate by flapping its wings. When presented with a moving pattern, the 

beetle tends to turn so that it follows the pattern and thus reduces the displacement between 

itself and its surroundings. 

There are a number of close similarities between Reichardt's formulation for the detec­

tion of motion and those found in the shift-and-compare operation. If we assume that the 

individual brightness patterns do not change over a relatively short period of time (i.e., the 

brightness constancy constraint), then the cross-correlation values will closely approximate the 

auto-correlation of the brightness function £(x), but rather than using a time averaging (filters 

5,4 and SB), there is a spatial averaging over the support region. Unlike Reichardt's model 

which is able to recover the sign of the velocity from the response R (the magnitude is poten­

tially contrast-dependent), the shift-and-compare obtains the sign of the velocity by using two 

copies of the comparison function: one for the positive velocity, and the other for the negative. 

van Santen and Sperling [vSS84] have proposed a modified version of Reichardt's motion 

detector, called the elaborated Reichardt motion detector. The main difference in this model 

is the addition of spatial filters to prevent spatial aliasing. Since Reichardt's original model 

has photoreceptors which are point shaped, their spatial impulse responses are simple delta-

functions and hence pass all spatial frequencies, van Santen and Sperling also discuss an 

arrangement of symmetric and anti-symmetric filters which prevent spatial aliasing. 

2.2 Horn-Schunck 

A contrast to the correlation-based approaches of Reichardt and Drumheller is the optical 

flow algorithm proposed in [HS81]. This formulation, which has received much attention from 

researchers in optical flow, assumes that the optical flow field is a differentiable vector field, 

and obtains a solution by explicitly extracting approximations of the image gradients. 

If we use the following abbreviations for the various derivatives of the image brightness and 

the motion field: 

dx dy dE dE dE 
u=dt>

 U = ^' ^=fe' * » = v *** E t = ~dJ 
then, using the chain rule, the brightness constancy constraint, = 0, becomes: 
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Exu + Eyv + Et = 0. (2.5) 

This is called the optical flow constraint equation [FT79]. Since we have one equation and two 

unknowns, (u and v), we must introduce further constraints to obtain a unique solution. If we 

assume that the flow field is locally smooth then we may use a regularization process of the 

Tikhonov type [PTK87]. 

This results in two terms: es the departure from smoothness, and ec the error in the optical 

flow constraint equation. These are given by: 

Gs = I J(( ul + u2y) + ( vl + v2y))dxdy> (2-6) 

ec = J J(Exu + Eyv + Et)2 dx dy. (2.7) 

We now seek values for u and v which minimizes the regularization expression 

R = ec + \es (2.8) 

where A is the regularization parameter which weighs the relative merits of smoothness and 

departure from the optical flow constraint equation. 

In the discrete case we may approximate es and ec at a point (i,j) in the image by Sij and 

CJJ, respectively: 

si,i = \(( ui+iJ ~  ui,j) 2 + (uhj+i ~  ui,j) 2) 

+ (Vi+lj - Vij)2 + (ViJ + l - Vij)2), 

ci,j = {ExUij + EyVij + Et)2, 

where Ex, Ey, and Et are estimates of the derivatives at the point (i,j). 

The discrete version of the regularization process now becomes3: 

R = + A c « \ j ) , 
» 3 

3 This formulation is from [Hor86] and differs from that of §1.3 in that the A term multiplies the error term 
rather than the smoothness term. These two formulations are equivalent with proper transformations of A. 
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so we seek values U J J and Vij which minimizes R. By differentiating R with respect to Uij and 

Vij and solving for the extremum, we have: 

{\ + \(El + El))uij = +(1 + \E2

y) Uij - XExEyVij - \EXEU 

(l + \(E2

x + El))uid = -\EyEx + (1 + \El)vi,j - XEyEt 

where (•) represents a local average. This suggests an iterative scheme as in: 

„n + l _ yE**ij +EyVi,j + Et 

U>J ~ ui,i 1 + A ( ^ + ^ 2 ) *' 

«'J " V 1 + \(E* + E2)  y-

To obtain estimates of the spatial and temporal derivatives we may consider a three-

dimensional cube around the point and use a set of difference equations. If we let i, 

j, and k be indices for x, y, and t, respectively, then: 

Ex ^ —(Ei+ij}k + Ei+ij}k+i + Ei+ij+i,k+Ei+ij+iyk+i) 

~ A~6x ^Ei^,k Ei<i'k+1 Ehi+i,k + E{j+i^+i) 

Ey — —(Eij+itk + Ei+1 j+i}k +E{j+itk+i Ei+ij+itk+i 

~46y(Ei'j,k + Ei+1>j<k + Ei>iMl Ei+ijtk+l) 

Et — ^(-Et,j,fc+i + Ei+ij^+i + -^i,j+l,fc+l + £t+l,j+l,fc+l) 

An interesting property of this algorithm is the propagation of information from a single 

point in the image to its neighbours. For the initial few iterations the motion field reflects 

a local minimum of R based on information from a small neighbourhood around each point. 

After several iterations the size of the neighborhood increases radially until the solution reflects 

a more global minimum. 

Since the Horn-Schunck algorithm requires accurate gradient information in order to obtain 

a good approximation of the true motion field, the performance of the algorithm will suffer 

greatly at points where there is a motion discontinuity. At these points, neighboring points 
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will be uncorrelated and hence Eq. (2.5) is violated. Since the estimations of ux,uy,vx, and 

vy require finite extent these values will become meaningless (often becoming extremely large). 

This causes the solution of the minimization to have unrealistically smooth flow fields which 

poorly satisfy the optical flow constraint equation. To avoid the problems at the boundary of 

objects it is necessary to mark points in the image where the gradients become large. Once 

these points are marked we can ensure that the regularization process does not smooth over 

object boundaries. 

2.3 Drumheller's Learned Motion Receptor 

Of particular interest to the work of this thesis is the work of [Dru84] in which a one-dimensional 

motion detector is "learned" from a series of examples. In this model the algorithm can be 

thought of as a "black-box", where the inputs are a series of buffers containing small regions of 

a sampled translating signal, and a series of outputs which are to be tuned to a set of velocities. 

If we denote the number of buffers by P\ and the length of each buffer by S, then we may 

define our output by the function Ax = B, where A represents a matrix whose rows consist of 

a series of examples (each row is PS columns), x is the set of stimuli, and B is a set of desired 

outputs. 

The simplest form of A would be a linear function. This would allow us to simply place a 

large number of example rows in our linear system, and to solve for A by finding the Moore-

Penrose Pseudoinverse of A [Alb72], which would be optimal (in a least-squared sense). As 

illustrated in [Dru84] the simple-minded linear approach is doomed to fail. For any linear 

system H it can be shown that 

H(xi, ...,xn) = H(xJ,Xn~) 

where (•) represents the infinite time-average. If we now let pi,.. .pn represent the inputs from 

the photoreceptors for a particular velocity, and n\,... nn the corresponding inputs for the same 

pattern moving in the opposite direction, then since f T j " , . . . = nf,... , n̂ , the time average 

of the output to the two patterns will be the same for both directions. In addition, if H is 
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linear, then negating the values of x , will produce an output which is in the opposite direction 

of the original pattern. 

To remedy these problems, Drumheller chose A to instead be a non-linear polynomial 

function4, so that the output now corresponds to Ax = V where, 

Vi = x0 (2.9) 
n 

-l~ ^ ̂  aiai xai 

O l =1 
n n 

a\ =1 a2=l 

+ ••• 
n n 

+ ••" aiai...akxQl...ak 

ai=l a*=l 

with n = PS. Here â - denotes the j-th element of the i-th row of A, and vi is the i-th output. 
The expression xai...arn denotes an ?n-way matrix of coefficients which multiplies the products 
of elements of rows of A; XQ is a constant offset factor. From this form it is easy to identify 
•the linear component (the first summation), and the non-linear component (the remaining 
summations). This expression is closely related to the Volterra series expansion for continuous 
non-linear systems: 

y(t) = fo (2 .10) 

/
+oo 

-oo 
r+oo r+oo 

/

-too r+oo 
/ f2(r31,f32)x(t - fit) x(t - p2) dpx dp2 

-oo J—oo 

/
+ O0 f + OO 

•••/ fk{pu---,pk)x{t-pl)---x{t-pk)dpl ••• dpk 

•oo J—oo 

The Volterra series expansion, as well as the related Weiner series expansion are standard 

tools for the identification of non-linear systems. Poggio pointed out the similarity of system 

identification and learning in [Pog75], and it is this similarity which Drumheller uses to formulate 

his learning process. 
4 Hence A must be thought of as an operator. 
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A common method for measuring the impulse response of a linear system is to excite the 

system with a Gaussian white noise signal, x(t), and then cross-correlate the input with the 

response, y{t), The impulse response, h\(o) is proportional to this cross-correlation5, 

h^a) = I y ( * ) s ( t - T ) . (2.11) 

From this result, the fc-th order Volterra kernel, fk(o~i,..., <7fc), can now be determined from 
the same cross correlation of the output y(t) of the system with a k-th. order delay of the input: 

/fc(<7i,...,CT
fc
) = ^ 2 y{t)x(t-oi)---x{x-ok). (2.12) 

The learning is now phrased as finding the values of x a j which minimizes the least 
squared error of both sides of Eq. (2.12). 

The examples were constructed using random images (intensities in the range of [0,1]) and 
consisted of the superposition of 10 random sinusoids. Once the random images were created, 
the images were sampled into the set of of buffers corresponding to the n = PS columns of 
A. These buffers contained more or less the same signal, but were shifted with respect to each 
other. To ensure that the resulting coefficients could be interpreted, the shift was limited to an 
integer number of pixels between the buffers. 

The result of this work showed that the optimal solution was indeed obtainable from the 
set of random images. In addition the interpretation of these coefficients was easily possible if 
presented in a graphical form. As a result of interpretation of the coefficients it was discovered 
that the solution obtained implemented directly a correlation algorithm. Drumheller does not 
address the problem of estimating motion from images which contain discontinuities and hence 
is susceptible to the same kinds of systematic errors found in all correlation-based approaches 
with fixed support. 

5 The autocorrelation of x(t) is $ l r ( r ) = Cuo(t), where uo(t) is the unit response function. 
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2.4 T h e Detection of Discontinuities 

2.4.1 Introduction 

As was discussed in Chapter 1, segmentation of the image into regions which likely correspond 

to different objects is a necessary pre-condition for the accurate determination of most vision 

modules including motion, stereopsis, shape from shading, and others. Without prior knowledge 

of the object boundaries these algorithms will often impose a smoothness constraint across the 

object boundary causing a degradation in the computed property. In the absence of cues from 

intensity edges, the depth/motion field may be our only cue for the determination of the object 

boundaries. 

Unfortunately, we are faced with a cyclic dependency: the computation of the motion 

discontinuities is difficult without an accurate flow field, and vise versa. As a result, there 

are two basic styles of discontinuity detection: those that detect the discontinuities before the 

computation of the full flow field, and those that do so afterward. 

Algorithms which compute the discontinuities after the computation of the flow field include: 

image growing techniques which attempt to group regions according to similar velocity [Pot75], 

center-surround operators which identify regions where there is a significant velocity difference 

between the center and surround [NL74], iterative techniques such as interleaving edge-detection 

with the smoothing process [Sch84a], and others. 

An excellent example of an algorithm which computes the discontinuities prior to the com­

putation of the entire flow field is the work of Spoerri and Ullman and is discussed in [SU87]. 

By computing the discontinuities before the flow field is computed we may achieve a decou­

pling of the computation of visual modules. In addition [SU87] uses only local computations 

and allowed for an implementation on a fine grained SIMD 6 multi-processor architecture. This 

algorithm will now be discussed in detail. 
6 Single instruction multiple data. 
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2.4.2 Spoerri and Ullman 

The input to the algorithm consists of a set of motion primitives which lie in a circular neigh­

borhood of a point in the image. The radius of this neighborhood is typically 5 to 8 pixels. 

Possible primitives which may be used include: image intensities, zero-crossings, and other edge 

features. Intensity values have the benefit that they can be computed at each pixel, whereas 

zero-crossings may be sparse or non-uniform across the image. The disadvantage of using in­

tensity values is that they are more sensitive to noise and changes in illumination, while the 

zero-crossings are far more stable since they often correspond to a physical phenomenon in the 

scene. 

From these primitives a histogram is constructed which corresponds to the number of mo­

tion primitives which support a given motion7. From these histograms a number of measures 

are introduced such as the signal-to-noise ratio, local support, and peak-ratio, from which the 

discontinuity information is inferred. 

The operation of the algorithm is based on the observation that for pixels which are near 
a discontinuity there will be two peaks in the velocity distribution of the histograms, one for 
each side of the object boundary. The following measures are used to detect the bimodality of 
the histograms: 

Peak-ratio The ratio of the height of the largest and second largest peak in the histogram. 

This value will approach unity at the boundary of the object. 

Signal-to-noise-ratio The signal to noise ratio is the number of votes for the largest peak to 

the number of votes for all other velocities. This value should be close to unity in regions 

of coherent motion (assuming noise-free motion primitives) and drop to 0.5 or lower at 

points near a discontinuity. 

Local-support This is the ratio of votes for the largest peak to the total number of votes. 

This is close to unity near coherent motion and becomes smaller as the distance to the 

discontinuity decreases. 
7 The motion is assumed to be one of a discrete number of possible motions. 
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The detection algorithm attempts to measure the likelihood that the measures result from a 

depth-discontinuity in the image. Two statistical methods are used to measure this likelihood: 

a Chi-squared test, and the Kolmogorov-Smirnov test. 

The Chi-squared test measures how well the local histogram can be fitted to a Gaussian 

distribution. The parameters of the Gaussian are obtained by assuming that it is centered, 

and passes through the maximum. The Kolmogorov-Smirnov test is a non-parametric measure 

which measures the absolute difference between the cumulative density functions of the two 

histograms. This method has the advantage that fewer assumptions are made on the form of 

the histograms that are compared. 

Both of these measures have been shown to work well at determining the boundaries of 

random-dot stereograms and natural images. The value of these measures is generally mono-

tonic reaching a maximum at pixels on the boundary. By marking the global maximum (non-

maximal suppression) a reliable boundary can be obtained. These results are pleasing since 

they are determined from statistical properties of the two motion fields rather than ill-defined 

heuristics on the motion field (such as region growing [Pot75]). 
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Discontinuity Information 

Section 1.4 introduced the difficulties facing correlation-based algorithms near a depth-disconti­

nuity. I will refer to this problem as the figure-background problem since solving for the correct 

displacement requires segmenting the support region into two regions: one corresponding to 

the motion in the foreground, and the other to the motion of the background. As we shall 

see, the degree to which a discontinuity in the support region may affect the ability to resolve 

the apparent motion is, in part, related to the texture of the image. This can be understood 

if one compares the motion fields of two types of images: natural band-limited images, and 

random-dot stereograms. 

Since we are matching regions of the image at time to to regions at time t\ there is an asym­

metry introduced, namely the difference in behaviour of cf> at occlusions and dis-occlusions. 

Occlusions correspond to portions of the image which are present at to but are not present at 

ii, while dis-occlusions occur in the converse situation. In the to frame of reference occlusions 

and dis-occlusions correspond to coverings and uncoverings, respectively. Portions of the image 

which become covered result in poor displacement predictions since the best match will corre­

spond to random correlations in the image. Conversely, for portions of the image which become 

uncovered, the displacement predictions are only effected from the effects of averaging over an 

incoherent support region. It is worth noting that it is the disparities of points of dis-occlusions 

which we are interested in improving since there is insufficient information at occlusions to 

allow the recovery of displacement using <p. 

41 
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3.1 The Figure-Background Problem 

Let £ denote the radius of a square support region used for matching points in one image to 

points in the other. If we constrain the displacement field so that (u(x, y), v(x, y)) £ (—6,8), 

then we may compute the displacements of a point (x,y) by choosing a vector (u,v) which 

minimizes 

<f>t(Et(x, y),Et+At(x + u,y + v)), where 

^(x,y;u,v) = ^2 (Et(x + i,y + j)-Et+At(x + u + i,x + v + j))2. 

This corresponds to locating the minimum of the error surface 4>(u, v) as shown in Fig. 3.10. In 

regions of coherent motion, this error surface will contain a single global minimum which corre­

sponds to the true motion (see Fig. 3.10(a)). If, however, there is a discontinuity which crosses 

the support region, the corresponding error surface may contain more than one minimum (see 

Fig. 3.10(b)), one corresponding to the motion of the background, and one to the foreground. 

global _ 

minimum 

-8 u +8 -8 u +8 
(a) (b) 

Figure 3.10: (a) Unimodal and (b) bimodal error-surface contours. 

The task of choosing which of these two minima correspond to the true motion of the 

point in the image based purely on the error values themselves is very sensitive to the texture 

characteristics of the objects in the scene. If there is sufficient texture in the image, the auto­

correlation of the image will contain a significant peak, even in portions of the image which are 

near a discontinuity. This significant peak allows the correct recovery of the true motion. This 

is not the case if there is insufficient texture in the image as is often the case in low-frequency 

"natural images". This sensitivity to texture can be demonstrated by considering two types 

of images which contain very different textures: "natural" band-limited images, and highly 
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textured random-dot stereograms. 

3.1.1 Random-dot Stereograms 

Consider a random-dot stereogram where the image intensities are randomly chosen to be 0 or 

1 with equal probability. To simplify matters, consider the problem of determining the stereo 

disparity along the x-axis (it is assumed that v(x,y) = 0, V x,y). 

In the case where there is coherent motion across the entire support region, then we can 

expect an error value of zero at the true displacement (assuming a discrete translation), and a 

mean error value of M = ^(2£ + l) 2 for all other displacements (see Fig. 3.11(a)). Additionally, 

as we increase the size of the support region, £, the error values will asymptotically approach M 

with decreasing variance. This distribution of error values is similar to a negated delta function 

and makes localization easy. 

Figure 3.11: Error values for random-dot stereogram: (a) Coherent depth field, and (b) Dis­
continuous depth field. 

If the support region contains a discontinuity, then we expect the error distribution to 

contain two local minima which are significantly less than M (see Fig. 3.11(b)). If we denote 

the fraction of the support region which votes for U~2 by a, then the expected value for the error 

at U2 is 

Since the error value at U2 is | M , then we can estimate the fraction of the support region 

Error 

M 

0 

\a(2t + l)2. 
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which supports the u(x) = U\ hypothesis by: 

a | ( 2£ + D 2 ' 

For example, solving for a at U~2 in Fig. 3.11(b) would give a = 0.75. This tells us that 

approximately 75% of the support region supports the hypothesis that u(x,y) = U~2- The 

worst-case arises when the discontinuity bisects the support region giving equal error values at 

the minima. It is worth noting that since the size of the support region is odd, the fraction 

of the support region which corresponds to the same motion as the center pixel will always be 

greater than 0.5. This implies that provided the boundaries of the objects are relatively smooth, 

a simple winner-take-all strategy of choosing the displacement corresponding to the smallest 

error value will statistically perform very well on highly textured images such as random-dot 

stereograms. Such a scheme for determining the displacements in random-dot stereograms has 

been shown in [LG90]. The displacement fields obtained from this scheme has been shown to 

work very well, even at points near object boundaries. 

This good performance is partially due to the large amount of information available from the 

random-dot images. Since a region in the left image is perfectly correlated with its corresponding 

region in the right image, and are statistically very unlikely to match an incorrect region, 

there is a very large signal for the correct velocity. In fact the autocorrelation of a random-

dot stereogram will be a delta-function, and is therefore easy to identify. In fact this signal 

will usually be sufficiently strong, even in regions near discontinuities, to allow good disparity 

measurements. 

The fact that random-dot stereograms are statistically unlikely to give rise to ambiguous 

motion fields makes them an unreasonable model for for testing real vision algorithms. In 

addition, natural scenes contain a great deal of low frequency components. This means that 

neighboring pixels will not be independent as they are in random-dot stereograms. For these 

reasons it is necessary to explore the behaviour of correlation-based schemes with images which 

are more representative of those occurring naturally. 
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3.1.2 Natural Band-limited Images 

To examine the behaviour of our correlation algorithm near discontinuities, it was necessary 

to construct synthetic images which were more representative of the types of images found 

naturally. While it would have been possible to use natural images, synthetic images allowed 

for easy modification of the texture parameters. 

The texture found in the synthetic images was constructed by taking the superposition of a 

number of randomly chosen sinusoids1. The wavelength of each sinusoid was chosen randomly 

in a specified interval. The angle of propagation, as well as the phase shift of each sinusoid 

was chosen randomly from the interval [0, 2n). To reduce the effects of the higher frequency 

sinusoids in the image, the amplitude of each sinusoid was proportional to its wavelength. By 

changing either the number or the wavelengths of these sinusoids, one is able to control the 

amount of texture information in the images. An example of this type of image is found in 

Fig. 3.1.2. To simulate the motion of an object, regions of the textured image were "cut out" 

and repositioned according to the desired displacement. 

This band-limited image was generated by 
superposition of 20 sinusoids; the wave­
lengths randomly chosen from [10, 30] pix­
els. 

Figure 3.12: Randomly textured disc on a 
uniform background. 

Figure 3.13 shows the flow field obtained from a band-limited image. The texture for 

the center disc and the background were constructed from two randomly generated sets of 20 

sinusoids with wavelengths from 10 to 30 pixels. The flow was computed using a (13 x 13) 

support region. The true-displacement of the disc is two pixels to the right in a stationary 

textured background. From this needle-diagram of the flow field the over-generalization of the 

'This technique was originally introduced in [Dru84]. 
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object boundary to pixels in the nearby background is quite apparent. The size of this swelling 

of the object boundaries is proportional to the size of the support region. This phenomenon 

can be understood if one looks at the behaviour of <j> across the boundary of the object. 

Figure 3.13: Needle diagram for band-limited (100 x 100) image. Disc motion is (u, v) = (+2,0). 
Flow markers are placed every 4 pixels with £ = 13 and displayed in the to frame of reference. 

In random-dot stereograms, each object has the same image characteristics: a mean bright­

ness value of 0.5 with each pixel uncorrelated to all others. Natural images, on the other hand, 

generally contain many low-frequency components which give rise to regions of similar bright­

ness. The assumption of our model is that by ignoring the DC component of the brightness in 

a small region, we can use the local variation in brightness to correctly match the region. This 

assumption may have difficulties near an object boundary since the support region may contain 

two regions of different brightness values separated by an intensity step-edge. This situation is 

depicted in Fig. 3.14 in which a dark circular object is moving in a light, static background. 

Displacements which attempt to match pixels of the light background to dark object pixels will 

result in a large error value, so the displacement corresponding to the smallest error for the 
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point Po will attempt to match the contours of the step-edges in the two images . This seems 

reasonable since the step-edge is the most salient feature to match across the two images, and 

is likely to correspond to a meaningful feature in the image. This behaviour of "tracking" the 

intensity edge is similar in spirit to the optical flow algorithm proposed by Hildreth [Hil84]. 

Background 

Figure 3.14: Behaviour of <f> across an intensity-edge of an image. 

To understand why the swelling phenomenon takes place, consider the point P\ in the back­

ground, close to the boundary of the object. Since this point is close to Po, the support regions 

will be very similar to each other (especially if the region size is large compared to the distance 

separating the points), the same edge-tracking behaviour will occur. Since the motion of the 

intensity-edge has no relationship to the displacement of the background, the resulting motion 

field will reflect the motion of the edge. This effect can be seen in the right-hand portion of 

the background in Fig. 3.13. While it might seem reasonable to simply locate the step-edges 

and avoid the matching of features on different sides of the edge, this process would be unable 

to differentiate between edges arising from a depth discontinuity and those arising from the 

texture of the object. 

In cases where the brightness of the foreground and background are similar, the effect of this 

edge tracking is less pronounced since the error values better reflect the brightness information 

of the background. Even in these instances the flow field may be degraded by smoothing due 
2This is similar to the behaviour exhibited in Reichardt's motion detection model [Rei61] in which a low-

contrast pattern moving in the "prefered" velocity may produce a significantly smaller response than a high-
contrast pattern moving in the opposite direction (see §2.1 for details). Unlike Reichardt's model which is able to 
recover the correct sign of the velocity, the cross-correlation matching functions are not able to recover the sign 
of the velocity. Instead we replace the single motion receptor for a given velocity with two correlation values: 
one the positive direction, and another for the negative. 
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to the fact that we are averaging over a large region. This can be seen in the top portion of the 

disc in Fig. 3.13 where the predicted flow lies between the ideal motion of the foreground and 

the ideal motion of the background. 

A common technique used to improve the performance of correlation-based motion algo­

rithms is to convolve the images with a band-pass filter such as a difference-of-Gaussian filter 

(DOG). This has the effect removing the low frequency components of the image and emphasiz­

ing the high-frequency components such as the step-edges. This emphasizing of the step-edge 

may help the proper tracking of points of the object near the boundary, but may worsen the 

displacement estimates for points in the background near the discontinuity. In addition, there 

is still a sensitivity to the nature of the texture of the images even after the DOG is applied. 

To avoid these effects on the comparison operator, <f>, near a discontinuity, the size and 

shape of the support region must be changed dynamically. For example, by choosing the sub-

neighborhood Rw to estimate the motion of Po and Re for Pi, only features corresponding to 

the correct side of the discontinuity are used for the matching and thus an accurate estimation 

of motion can be obtained. Before one can choose the correct size and shape for the support 

region, an accurate means of measuring the position and orientation of the discontinuity must 

be developed. This process is described next. 

3.2 Discontinuity Information 

As was mentioned in §1.4 the detection of discontinuities of the motion field is a difficult problem. 

This problem would become trivial provided accurate flow estimations were available, but since 

this is impossible to obtain without already locating the discontinuities we are faced with a 

dilemma. In order to overcome this interdependency of discontinuity and flow information, an 

iterative approach will be used. The first step of this process uses the information obtained 

from the set of oriented sub-neighborhood and compares their output to detect the discontinuity. 

This discontinuity information can then be used to guide the choice for our support region and 

thus obtain a more accurate estimation of the displacement. 

Suppose we have a region of an image which contains a discontinuity in the displacement 
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field. The process of detecting the discontinuity involves estimating the first derivative of the 

flow field and locating positions where the magnitude becomes large. To estimate the derivatives 

ux{x,y) ,uy{x,y) ,vx{x ,y), and vy(x,y), we may use four difference equations given by 

ux{x,y) = lim 
£—•0 

vx(x,y) = lim «-*0 

u(x + e,y) ~u(x,y) 
€ 

v(x + e,y) - v(x,y) 
uy(x,y) = lim 

vy(x,y) = lim 

u(x,y + e) -u(x,y) 
i 

e 
v(x,y + e) - v{x,y) 

e „ - • - - t_^Q e 

Since we are not interested in accurate estimations of the derivatives, but rather only iden­

tifying points where they become large, we may omit the denominator of these expressions. 

To obtain estimations of u(x,y), v(x,y), and values of nearby points, we may use the values 

obtained from the overlapping sub-neighborhoods. More formally, our comparison function for 

the overlapping sub-neighborhoods is 

<£AT(X,y;u,v) = (E{x + i,y + j)- E{x + u + i,x + v+ j))2 

i,jeN 

where N is one of: 
R = 

- $ < i < t, < j < 0 
Rn = {{iJ)\ - £ < * < -e < j < o} 

Rs = {(iJ)\ -Z<i<Z,0<3 <Q 

Ryj - e < i < 0, -t < j < £} 

Re = {(iJ)\ 0 < i j < £} 

If we now denote the motion obtained by minimizing the error function </>,• as w,(x,y) and 

V((x,y), then our estimations for the derivatives of the motion field become: 

Ux(x,y)=uRw(x,y)-uRc(x,y), vx(x,y) = (x,y) - vRe(x,y) 

uy(x,y) = uRt(x,y) -uRn(x,y), vy{x,y) = vRs{x,y) - vRn{x,y) 

Additionally, define two quantities, hereafter called shear measures, denoted by S^s a n d 

SEW- These values measure magnitude of the motion difference between the north-south and 

east-west pairs of sub-neighborhoods, and thus approximate the magnitude ofthe partial deriva­

tives in the x and y directions. 

SNS(x,y) = \\(uRn(x,y),vRn(x,y))-(uRi>(x,y),vRa(x,y))\\2 
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SEW{X,V) = \\{uRc{x,y),vRc(x,y))-{uRw{x,y),vRw(x,y))\\2 

Provided the sub-neighborhoods are able to accurately recover the motion of their respective 

region, the estimations will be accurate. However, like the square support regions discussed 

earlier, the presence of discontinuities in the support region may cause one or more of the sub-

neighborhoods to produce an incorrect displacement, resulting in poor derivative estimates. For 

example, if the discontinuity contour is oriented vertically so that it bisects the square support 

region into two roughly equal regions, then the values of ux(x,y) and vx(x,y) are likely to be 

accurate since Rw and Re contain votes from a single motion source. The values of uy(x,y) 

and vy(x, y), however, which should ideally be zero, are likely to be inaccurate since Rs and Rn 

both contain equal support from both sides of the discontinuity. A similar phenomenon occurs 

for a discontinuity oriented horizontally. 

To compute the location and orientation of the discontinuity contour using the above mea­

sures, it is necessary to impose restrictions on the types of contours we wish to detect. As will 

be demonstrated, if we model the discontinuity locally by a straight line, with either a vertical 

or a horizontal orientation, the location and orientation of the discontinuity can be computed 

using only the four sub-neighborhoods. 

3.2.1 Detecting Discontinuities 

In order to detect discontinuities, we are only interested in identifying positions where the mag­

nitude of the partial derivative becomes large. Since the shear values S^s a n d SEW approximate 

the partial derivative in the x and y directions, a discontinuity will give rise a large value for 

one or more of these values. By choosing an appropriate threshold, 6, for the shear values, 

we can define a boolean function I(x,y) which is true for all positions where a discontinuity is 

believed to occur, and false otherwise, as: 

false otherwise 

To test the reliability of the above detection scheme, a synthetic image of a translating disc 

was generated and D(x,y) computed for each point. The results of this test are depicted in 

D{x,y) = i 
true if max.(SNs(x,y),SE\v(x,y)) > 9 

(3.13) 
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Fig. 3.15, where filled dots represent the locations where D(x,y) = true. The true boundary 

of the disc, which was moving in a static background with (u,v) = (3,2), is marked by the 

circle. The size of the support region was chosen to be £ = 9, and the value of the threshold, 

6, was 1.0. This demonstrates that the detection scheme is able to locate the discontinuity 

boundary quite well within three to four pixels of the true boundary. This localization could 

be improved by using a smaller support region, but we may experience a decreased ability to 

detect the discontinuity. Our ability to localize the true contour is reduced in the right-hand 

portion of the disc, because this region corresponds the "leading-edge" of the disc, where, due 

to the translation, portions of the first image are covered in the second image. Because the 

features of this portion of the image are not present in the second, the resulting motion will 

correspond to random correspondences of the two images. This is not discouraging since the 

SSD surface is incapable of conveying the true displacement at these points. 

• •• • • • • ••• 
•••• •••••••••• 

Figure 3.15: Detection of discontinuities using D(x, y): Solid dots represent points in the image 
where a discontinuity is predicted (£ = 9, (u,v) = (3,2) in the disc's interior, 9 = 1, points 
taken in to frame of reference) 

In using this scheme there is a tradeoff between detection and localization of the true 

discontinuity boundary and care must be taken to choose an appropriate support size. Using a 
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large support region increases our ability to detect the discontinuity, but is able to localize the 

boundary as accurately as a smaller support region. 

3.2.2 Determination of the Orientation of a Discontinuity Contour 

Once a position in the image has been identified by I(x,y) as a discontinuity, the task remains 

to find its orientation. The orientation of the discontinuity is important since it provides us 

useful information to guide our choice for the shape of the support region. The orientation of the 

discontinuity can be determined by comparing the error values, <̂ >(), of the best matches for the 

four sub-neighborhoods, and determining which of the two pairs (north/south or east/west) 

best describe the motion of the scene. For example, if we are near a discontinuity which is 

best approximated by a vertical line, then we would expect the total error of the east/west 

neighborhood pair to be smaller than the total of the north/south pair. The converse is true 

for a horizontal discontinuity. Formally, define 0(x,y) which gives the best approximation of 

the discontinuity orientation as 

I vert. otherwise 

An example of the computation of 0(x,y) for positions where I(x,y) = true is given in 

Fig. 3.16 where solid dots represent a horizontal hypothesis, and hollow represent vertical. 

discontinuity contour by horizontal and vertical line segments corresponds closely to the optimal 

fit. While there are some spurious orientation predictions in this example, 0(x,y) is able to 

segment the discontinuous regions into four parts, corresponding to the two horizontal and two 

vertical regions. In addition, the boundaries of these regions occur very near the point where 

the true orientation lies halfway between the vertical and horizontal hypothesis. By comparing 

the values of 0(x,y) in the example to the optimal values at the same locations, it was found 

that 491 of the total 632 points were correctly classified (approximately 78%). 

In addition to using the error values of these pairs of sub-neighborhoods, clues for the 

determination of the correct orientation of the boundary may be found by examining the shape 

horiz. if ( ^ (x,y) + <pRt (x, y)) < {(j)^(z, y) + <l>Re (z, y)) 
(3.14) 

From this example it is quite clear that this scheme for approximating the orientation of the 
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Figure 3.16: Orientation of discontinuity contour: solid dots represent a horizontal hypothesis, 
hollow dots represent a vertical hypothesis. True discontinuity contour is given by the circle. 
Positions are given in a to frame of reference. 

of the error surfaces. Such features of the error surface may be discovered in the learning process 

of the network. 

Once the correct orientation of the discontinuity boundary has been established we still 

must determine which of the two opposing sub-neighborhoods correctly capture the underlying 

displacement of the object point. There are a number of cues we may exploit to obtain this 

goal. 

Perhaps the most obvious cues are the error surfaces themselves. Since only one of the sub-

neighborhoods will contain a completely coherent motion field, we can expect the minimum 

error value to occur in the support region corresponding to the true motion. Additionally we 

may also exploit the fact that a support region observing the correct motion will likely contain a 

more prominent valley as compared to the support regions containing incoherent motion [BA90]. 

Thus it is likely that a sub-neighborhood observing the correct displacement will contain a more 

prominent valley as compared to the other sub-neighborhoods. It is hoped that both of these 

cues may be discovered in the input distribution of the training set during the learning process. 



C h a p t e r 4 

The Implementation of the Neural 

Network 

The integration module of the algorithm illustrated in Fig. 1.5 consists of a single feed-forward 

neural network, with inputs corresponding to the cross-correlation matching functions for each 

of the five sub-neighborhoods, as well as the related shear values. The goal of the learning 

process is to obtain a set of weights which will effectively integrate these two sources of knowl­

edge and produce reliable motion predictions as output. The structure of the network, the 

representations of the inputs and outputs, as well as the construction of the training sets will 

now be described in detail. 

4.1 The Input/Output Representations 

As was mentioned in §1.10 the choice of how to represent the image information may greatly 

influence the network's ability to discover salient features of the input distribution, and thereby 

learn a meaningful approximation of the objective function. There are a large number of po­

tential representations, varying from the low-level description of the "raw" brightness values, to 

higher-level information such as the error-values of the cross-correlation comparison functions. 

Drumheller developed an algorithm which, using the brightness values of a one-dimensional 

image, successfully "learned" a set of filters which were sensitive to a given orientation and 

velocity [Dru84]. 

While this result is pleasing in that it uses primitives which closely correspond to that 

54 



§ 4-1 '• The Input/Output Representations 55 

of the human visual system, there are a number of reasons which the choice of a higher-

level representation of the image information, namely the cross-correlation error values, seem 

appropriate: 

• The cross-correlation seems to "capture" the intuitive meaning of image correspondence 

and also corresponds closely to features found in biological visual systems. If indeed these 

primitives do capture the essence of image correspondence, then the use of lower-level 

primitives such as the brightness values would require the learning process re-discover 

functions which are similar to the cross-correlation function. 

• The sum-of-squared-differences operator has been shown to perform well in regions con­

taining coherent motion [LG90]. 

• Since the cross-correlation is composed of simple arithmetic functions (addition, mul­
tiplication, and subtraction), it could easily be realized with a collection of non-linear 
perceptrons. By adding an additional layer these functions could be computed by our 
model. 

• By providing these higher-level primitives the complexity of the network, and therefore the 
complexity of the learning process, is reduced significantly, allowing for a more manageable 
implementation of the algorithm. 

A similar argument can be made regarding the shear values since we could require that 

the network extract discontinuity information directly from the brightness values. Again the 

multi-layer perceptron certainly possesses the computational power to compute these measures 

directly from the brightness values since they are simple characteristics of the error surfaces, 

but may require the addition of an unacceptably large number of hidden units. Additionally, 

if these shear values do capture significant information about the discontinuities of the image 

data (as seems likely from the experiments in §3.2.1 and §3.2.2) then similar representations of 

this information would be constructed in the learning process anyway. Again it is our hope that 

by adding the shear values as inputs to the network, the learning process can be simplified. 
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By examining the weight-space of the trained network we may gain insights as to the useful­

ness of the cross-correlation and shear values for the discrimination of disparity. If, for example, 

the weights values corresponding to the shear inputs are relatively large compared to the weights 

of the correlation values, then we may suspect that they provide useful information about the 

input distribution. On the other hand, if the magnitude of these weights are relatively small, 

then we may suspect that they are not useful, and the discontinuity information is extracted 

directly from the correlation values. 

While the standard sum-of-squared-differences (SSD) could be used directly as the inputs 

to the network, there are a number of reasons why it is necessary to modify our correlation 

measures before they can be used as inputs to the network: 

• Since the magnitudes of the cross-correlation values will depend on both the quantization 
range of the pixels, as well as the area of the support regions, it will be necessary to scale 
the values so that the resulting network is not tied to any individual scale or imaging 
process. 

• Ideally we will also want to scale the values according to the shape of the support region 
as well since the expected SSD value for the larger square support region are larger than 
those of the half-regions. This will allow for easier interpretation of the resulting weight 
parameters after learning has taken place. 

• Normalizing the input is crucial for the learning process since we must know the expected 

range ofthe inputs before we can initialize the weights prior to learning. If the range of the 

random initial weights is not chosen carefully we may get saturation of the hidden units 

early in the learning process causing the learning to stall. This is because the derivative of 

the sigmoid function is small for both large and small total input, causing the magnitude 

of the weight updates to be very small, making the learning of the hidden unit extremely 

slow. 

With this in mind, our scaled version of the SSD values become: 
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</>i(x,y;u,v) = 5-j , t£S (4.15) 
az\i\ 

where the brightness values are assumed to be in the range [0, a] and \i\ is the area of the 

support region (in pixels) of the support region i. 

Thus, since we have five support-regions to consider, and two shear values, the total number 

of inputs needed is given by: 

5(26 + 1) + 2 for the 1-d case, and 

5(26 + l ) 2 + 2 for the 2-d case 

The size of our network depends on two parameters: the size of the set of potential displacements 

(the value of 8) as well as the motion problem we are interested in solving (binocular stereo 

vs. optical flow). Unfortunately, since the learning time of the network is likely to be C(|xt»j3) 

[PH87], and grows linearly with the number of inputs, we will have to make restrictions 

on the motion which is to be investigated. It was decided that it was more reasonable to 

restrict our networks to the one-dimensional motion problem (corresponding to binocular stereo 

correspondence), rather than making restrictions on 8. 

Now we must consider the representation for the outputs of the neural network. The most 

obvious choice would be to assign an individual output unit for each of the potential displace­

ments we wish to consider. This would allow the determination of the displacement to the 

nearest full pixel. However, it should be possible to obtain better accuracy if we construct the 

outputs in such a way that they are able to convey sub-pixel displacements. This seems like a 

reasonable expectation since the network will likely be able to interpolate the error surfaces to 

get a more accurate displacement prediction. 

To accomplish this we have to change our output scheme so that real-valued displacements 

can be represented. This is achieved by adopting a distributed output representation which 

is similar to that found in [HMR86]1. In this scheme we arrange a set of output units Oi(x), 

i £ [—8, 6], where the response of each unit to the true displacement x is given by the equation: 

Oi{x) = e^~, ie{-8,6}, (4.16) 
x This type of representation is often referred to as "coarse-coding". The individual outputs respond over a 

range of disparities rather than a single disparity value. 
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a = (4 In 4)~ 2 ̂  0.4247 
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Figure 4.17: Ideal output unit response for output units Oi and Oi for a given displacement x. 

This is a scaled Gaussian response with a chosen such that the response of a unit 0.5 pixels 

away from the true output would give an output of 0.5 (see Fig. 4.17). This ensures that the 

largest output value of the network is unity, and the total output over all units should ideally be 

very close to one. Given a set of outputs corresponding to a displacement that lies between two 

integer quantities, we may now compute the predicted displacement to a finer level of precision 

than could be obtained from a "winner-take-all" strategy. 

If we choose such an output representation we must be sure that we are able to accurately 

reconstruct the disparity from the set of output responses of the neural network. If we were 

optimistic about the network's ability to exactly reproduce the ideal output, then we could 

use Eqn. (4.16) and simply solve for the displacement x. In reality the output of the neural 

network will never correspond exactly with the optimal values, so we will have to relax our 

constraints on the outputs to obtain a solution which is reasonable. Suppose that we are given 

a set of outputs, O,, and that the maximum value occurs at Omax- To obtain a solution for x 

we may take the value of the maximum, Omax, as well as the points adjacent to the maximum 
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{Omax-l and 0max+i), and locally approximate the ideal Gaussian response by a quadratic. 

From this quadratic we may solve for the point x which is the maximum which should closely 

correspond to the true displacement x. 
The economy of such a representation is apparent; it is possible to form fine discrimination 

with only a small number of coarsely-tuned overlapping units. A familiar example of this type 

of distributed representation is found in color vision [Bon88]. The response of any one of the 

three broadly tuned color receptors is ambiguous, but the relative activities of all three allow 

the discrimination of a large number of colors. 

4.2 The Network Topology 

The network topology which we will adopt will be a fully-connected single hidden layer feed­
forward network. Since the ideal number of hidden units is not known a priori this will have to 
be established empirically. A frequently used rule-of-thumb has been to use a number of hidden 
units which is proportional to the number of input units squared, but since there is reason to 
believe that our classification problem is fairly well behaved we will likely require fewer hidden 
units. 

4.3 Creation of the Training Set 

To obtain the training samples it was necessary to create them from synthetic images. While 

it would be more satisfactory to obtain these samples from sequences of natural images, the 

painstaking process of calibration and setting up the scene for the large number of images 

required would be too forbidding. 

To generate these synthetic images an algorithm for generating an object with arbitrary 

shape and undergoing a defined motion was developed. A large number of parameters were 

specifiable by the user including the position, texture, and the direction and magnitude of the 

object's motion. The motion sequence generated from this algorithm consists of a pair of images 

corresponding to the time steps. 

Once the pair of images were created, points were selected at random and the SSD and 
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shear values were computed. Since the ideal motion of the point is known the ideal output 

vector can be computed according to Eqn. (4.16), and these with the correlation and shear 

values comprise a single training pattern. This process is continued for each pattern generated 

until the entire training set is generated. The size of this training set is dependent on the 

range of displacements to be considered, as well as the total number of weight parameters in 

the network. This process of generating the training patterns will now be described in greater 

detail. 

4.3.1 Generation of the Synthetic Images 

To generate the synthetic images, some means of generating a random texture is needed. As was 

described in §3.1.2 this is implemented by superimposing a series of randomly chosen sinusoids. 

This is similar to the process described in [Dru84j but generalized to two dimensions. For each 

sinusoid a number of parameters must be supplied including: 

Xi € 5ft The wavelength (in pixels) of the sinusoid, 

a, G 5ft The amplitude. 

fi € [o, 27r) The angle of propagation of the sinusoid taken in a counter-clockwise direction 

We may now define a texture description r which is a set of n 4-tuples containing the values 

of the sinusoid parameters. 

from the rc—axis. 

Ui 6 [O, 27T) The phase-shift of the wave relative to the origin. 

Thus, for a given position (x, y) in the image, the amplitude of a given sinusoid i is 

T = {< Ai,ai,71,1/1 >,...,< A„,an,7„,i/„ >} 
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We may now determine the brightness value BT for any point in the image by summing over 

each component in the texture description. 
i<n 

BT(x,y) = ^2ipi(x,y) 
t=i 

While this gives the brightness of a texture at a given point, this is not sufficient for constructing 

the image E(x, y). To obtain E(x, y) we must do two things: (1) integrate over the area of each 

pixel to avoid aliasing, and (2) quantize this real-valued brightness value into an integer pixel 

value. Thus the equation for the image texture now becomes: 

E(x,y) = [ki + k2 [l [l BT(x + x',y + y')dx'dy'] (4.17) 
Jo Jo 

where k\ and k2 are appropriately chosen so that the values of E(x,y) fall into the desired 

range (for the experiments in Chapter 5 a range of [0,255] was used for 8-bit pixel intensities). 

Now that we have a means of obtaining brightness values from a texture description, all 

that remains is to choose two such texture descriptions, one for the object and one for the 

background, and the desired velocities for the background and the foreground. Prom this 

description is it easy to create the set of images corresponding with the desired motion. This 

formulation has several advantages: 

« Since BT is defined Vx, y G 3?, we may place the object in any position, not just at discrete 

pixel positions. This avoids the problems of "cut-and-paste" methods of creating synthetic 

images and allows us to simulate the apparent motion more accurately. 

• By choosing the number of sinusoids in r, and the distribution from which the A;'s are 

chosen, there is a great deal of control over the texture in the image. For example if we 

choose a large number of sinusoids and/or choose small values for A,- we obtain a highly 

textured image. 

For the experiments in Chapter 5 a fixed number of sinusoids were used (20), and the wave­

lengths X{ were chosen randomly from an interval [Am t n, Xmax], with a uniform distribution. 

The amplitudes aj were chosen such that a, oc A. This ensures that the high-frequency compo­

nents of the images will not dominate the textures, and parallels the 1/F noise models which 

are often used to characterize random processes found in nature [Sch84b]. 
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4.3.2 The Synthetic Object 

To avoid biases for discontinuities oriented along a particular direction, the shape of the object 

was chosen to be a circular disc so as to introduce samples with discontinuities oriented in large 

number of orientations into the training set. Ideally one would want to also include objects of 

other shapes such as rectangles and irregular objects. This would further reduce the possibility 

of introducing a bias for objects of a particular shape. Only circular objects were considered 

for the training set so as to reduce the number of training patterns. It was hoped that the 

generalization produced for circular objects would also perform well for general images. The 

radius of the circular disc was varied so that there was no bias for features of a particular scale. 

The disparity of the object, as well as the motion of the background, were both chosen to lie 

within [—8,8] and the two images corresponding to the left and right viewpoints were created. 

An example of such a pair of stereo images is given in Fig. 4.18. It is from these sets of images 

that the cross-correlation and shear values are to be taken. 

Figure 4.18: Right and left synthetic stereo images 

The central disc of the above (100 x 100) image has a radius of 20 pixels and is undergoing a 
motion of 3.5 pixels to the right; the background is moving 8.5 pixels to the right. The texture 
of both foreground and background contained 20 sinusoids with amplitudes randomly chosen 
from [10,40] pixels. 
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4.3.3 Sampling the Images 

The training patterns were constructed from a set of images described above. From each image 

a small number of random points (20 or more) were chosen, and the cross correlation measures 

for the 5 support regions, as well as the shear values were computed. This process was repeated 

until there were sufficient samples to characterize all possible combinations of the motions of 

the object and the background. 

4.4 Learning with Back-propagation 

Once the training set had been created we are now faced with with the task of learning our 

motion predictions from back-propagation. Since we do not know how many hidden units are 

necessary for our classification problem, we must discover this empirically. 

The learning was implemented using B P , a commercially available software package from 

the PDP research group [RM90]. This version of back-propagation includes the momentum 

term (see Eqn. (1.4)), as well as providing for easy modification of the network topology. 



C h a p t e r 5 

Experiments 

In order to discover the number of hidden-units required to obtain a solution which allows 

accurate displacement predictions, three networks were trained containing 15, 30 and 60 hidden-

units, respectively. The networks contained 11 output units corresponding to the disparities 

{0,..., 10}, 57 input units corresponding to the 5 groups of 11 inputs for the SSD values, and 

2 additional units for the shear measures. This topology is depicted in Fig. 5.19. 

Input 

Layer 

0 1 . . . 9 1 0 Displacements 

Figure 5.19: The network topology for a displacement range of [0,10] pixels. 
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Each image was generated by randomly1 choosing a velocity in the range [0,10] for both 

the disc and the background displacements. The radii of the discs were randomly chosen from 

5 to 30 pixels. The texture of each image was varied in each image by randomly choosing 

the values of A m , n and A m a x from which A; was chosen. 20 sinusoids we used for the texture 

description of both the object and the background. The width of this interval was chosen to 

be 30 pixels with A m ; n taken randomly from [5,20] pixels. 500 images were generated with disc 

and background motion randomly chosen, and 50 sample points were taken from each image 

for a total of 25,000 total samples. The SSD values corresponded to the sub-neighborhoods of 

a (13 x 13) support region as this was the smallest region size which was able accurately to 

resolve the image disparities in regions of coherent displacements. 

The network weights (wij) and the bias values (&,) were initially set to random values in 

the range [0,1] before the training was invoked. The learning rate e was initially set to 0.01, 

and the momentum term M was kept at a constant value of 0.9 throughout the training. The 

error derivatives were accumulated for each pattern in the training set, and the weight updates 

were applied at the end of each epoch2. The learning rate was increased after the first several 

hundred epochs, and was again decreased once the error gradients became small (several orders 

of magnitude smaller than the initial gradients). 

The training of the networks was performed three times for each topology, each with a 

different set of initial weights. The results of the learning process is depicted in Fig. 5.20 which 

gives the total squared error for each epoch. For each topology the results of all three trials 

were effectively identical and hence only one of the trials is presented in the error-graph. 

The results of the training show that of the three networks (hereafter called HU-15, HU-30, 

and HU-60 for the 15, 30, and 60 hidden-unit networks, respectively) only two, HU-30 and HU-

60, were able to approximate adequately the optimal disparity function. This demonstrates 

that more than 15 hidden-units are required to compute the disparity from the input data. 

When we compare the solutions obtained from HU-30 and HU-60 we see that the total squared 

error is apparently converging to 5 x 103 for both networks. This implies that the 30 additional 

hidden-units present in HU-60 do not allow for a noticeably better generalization of the input 
1 Unless otherwise specified, a random assignment will refer to a uniformly random distribution. 
2 The term epoch is generally used to signify a single pass through the entire training set. 



Chapter 5: Experiments 66 

Total Squared error vs. Epoch # 
Total square error x 10? 
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Figure 5.20: Total-squared-error (over all patterns) vs. # epochs for the 15, 30, and 60 hidden 
unit networks. 
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data, and that 30 hidden-units are sufficient to capture the relevant features of the input. 

While it is possible that, given sufficient training, the HU-60 network would discover addi­

tional properties of the input and thus obtain a better solution, it seems more likely that both 

networks have discovered the global minimum of their respective error-surfaces, and further 

training is unnecessary. Because the solutions obtained by the HU-30 and HU-60 networks 

seem to be perform equally well, HU-30 was chosen for further investigation since it requires a 

factor of two less computation for the evaluation of a set of inputs. 

One might ask why the solutions obtained have a residual error of 5 x 103 and why we 

were not able to reduce the error still further. There are a number of potential answers to this 

question: 

• There may be insufficient numbers of training patterns to allow for a better solution. 

• Some training patterns may contain ambiguities due to regions of near-uniform brightness 
or spatial aliasing. 

• The size of the support regions may limit the resolution of the motion and discontinuity 
primitives. 

• Some of the patterns correspond to points near a discontinuity with a diagonal orientation. 
The motion of these points can not be recovered accurately from the set of rectilinear sub-
neighborhoods used. 

5.1 Performance Analysis 

While the total-squared error (TSE) does give a general measure of the networks performance, 

since we are using a distributed output representation this measure does not give a good indi­

cation of the response to individual input patterns. For example consider the sets of outputs 

for a given set of target outputs depicted in Table 5.1. 

We can see that the outputs for case 2 have a smaller squared error than case 1, but 

correspond to a much poorer disparity output. For case 2 the disparity-error is slightly larger 

than 0.5 pixels while the outputs for case 1 do not even correspond to a unique disparity value 
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Case Output TSE 
Oo Oi o

2 
o 3 o 4 o 5 Oe o

7 
o 8 Og Oio 

Optimal 0 0 0 0 0 1 0 0 0 0 0 -
Case 1 0 0 0 0 0.3 0.3 0.3 0.3 0 0 0 0.71 
Case 2 0 0 0 0 0.6 0.4 0 0 0 0 0 0.72 

Table 5.1: Example error values for output response 

but rather a range of disparities. Therefore we must seek a better measure of performance of 

the distributed representation. 

To get a better idea of the performance of the neural network as compared to the "winner-

take-all" strategy3, the disparity predictions of both methods were computed for each of the 

25,000 training patterns. These disparity values were then compared to the known disparities 

as depicted in Fig. 5.21. The a;—axis gives the radius of an interval, and the y—axis gives the 

fraction of the 25,000 samples whose disparity was contained by an interval centered at the true 

disparity of each point. Strictly speaking the performance of the neural network should be tested 

on a set of novel patterns since the solution obtained may be partially the result of exploiting 

random correlations of the input data. Since the inputs were generated randomly there is little 

likelihood that such random-occurrence correlations among the inputs will significantly effect 

the behaviour of the network. 

From this graph it is apparent that the HU-30 network is able to determine the disparity of 

the training samples much more accurately than the single square support-region of the WTA 

algorithm. If we assume that the samples of the training set are representative of "natural" 

images, then we may construct a set of confidence intervals as given in Table 5.2. 

This table of confidence measures gives us the radius, p, such that with confidence C 

\x — x\ < p 

where x is the true disparity; x is the computed disparity. 
3 T o ensure a more fair comparison of the HU-30 and W T A algorithms, the W T A algorithm was modified to 

allow displacements within sub-pixel accuracy. This was achieved by interpolating over the SSD surface; more 
specifically by locally fitting the SSD to a quadratic and solving for the minimum. 
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% samples with absolute error < X pixels 

HU-30 
"WTA" 

65.00 

60.00 

0.00 2.00 4.00 
X (interval width in pixels) 

Figure 5.21: Accuracy of the motion predictions for the 25,000 training-set samples using (1) 
the traditional "winner-take-all" (WTA) algorithm, and (2) the neural network implementation 
(HU-30). 
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C = % Confidence p = Interval Width (Pixels) C = % Confidence 
Winner-take-all HU-30 improvement 

50 0.141 0.129 0.012 
60 0.243 0.213 0.030 
70 0.662 0.383 0.279 
80 0.978 0.688 0.290 
90 1.830 1.021 0.809 
95 2.964 1.853 1.111 
97 3.981 2.549 1.432 

Table 5.2: Widths of confidence intervals for winner-take-all and HU-30 

This result show that for relatively low confidence levels (50-60%), both WTA and HU-30 

are able to resolve the apparent disparity to less that 0.2 pixels from the true disparity. For 

more reasonable confidence levels (85-90%), however, we find that the resolving power of HU-

30 to be far superior to that of WTA. For example, if our goal were to resolve the apparent 

disparity to within a pixel of the true disparity, then we are able to classify each pixel with a 

90% success-rate as compared to 80% using WTA. 

The smooth shape of the HU-30 confidence function gives us reason to believe that network 

is indeed performing an interpolation of the comparison functions, &(•) to obtain sub-pixel 

accuracy. This hypothesis is further corroborated by the 10% improvement in the confidence 

for disparities with less than one pixel deviation from the true disparity. 

5.1.1 Image Segmentation and Object Boundaries 

Often in computer vision applications it is necessary to segment a scene into a set of objects. 

Depth and motion cues allow us to identify the object boundaries which give the underlying 

geometry of the objects. As was noted in Chapter 3, traditional correlation-based stereo and 

optical flow algorithms (WTA) are prone to error at the boundaries of objects. This may cause 

the shape of the boundaries to become degraded. 

To test the degree to which HU-30 is able to make use of discontinuity information, and 

thus obtain a better object contour, a series of test images were created (see Fig. 4.18). 

The disparities of the image were 8.5 and 3.5 pixels to the right for the central disc (radius 
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of 20 pixels) and background, respectively. To segment the scene, pixels were classified into two 

groups: pixels with disparities greater than 6 pixels corresponding to the disc, and pixels with 

disparities less than 6 pixels corresponding to the background. Once the pixels were classified, 

the contour was constructed. Fig. 5.22 and 5.23 correspond to the contours generated by the 

disparities from the WTA and HU-30 algorithms, respectively. 

Winner -take-All contour 

Tnje Contour — — 

Scile(inpUeli) 11111111111 

HU-30 Contour 
True Contour 

•»:•', - ; i--. milium 

Figure 5.22: Disc contour of WTA Figure 5.23: Disc contour of HU-30 

The center disc has a radius of 20 pixels and is undergoing a motion of 3.5 pixels to the right; the 
background is moving 8.5 pixels to the right. The object contours were generated by marking 
the 6-pixel disparity crossings. The texture of both foreground and background contained 20 
sinusoids with amplitudes randomly chosen from [10,40] pixels. Disparity measures taken from 
the (13 x 13) for Fig. 5.22 and the corresponding sub-neighborhoods in Fig. 5.23. 

Close examination of the object boundaries shows that for portions of the image which 

are visible from both the left and right viewpoints (i.e., the right portions of the disc) the 

localization of the object boundary is greatly improved. The location of the HU-30 boundary 

is predicted to within zero to 2 pixels of the true contour (on average), while the boundary 

predicted by WTA is significantly poorer, occurring up to 5 pixels from the true boundary. In 

portions of the image containing occlusions the localization of the object boundary is much 

poorer for both algorithms. This demonstrates that for dis-occluding boundaries the neural 

network is able to accurately recover the object contour while occlusions provide too little 
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information to recover the disparity when using either algorithm. 

To further characterize the performance of the stereo algorithms, it is necessary to analyze 

the performance at occluding and dis-occluding boundaries separately. To accomplish this 

consider an object placed at the center of the left image which is moving to the right relative 

to the background. We may now partition the image into two equally-sized regions: The left 

side which will contain occlusions, and the right side which will contain only dis-occluding 

boundaries. 

To study the performances of the WTA and HU-30 algorithms for these two separate regions 

a set of 100 randomly generated images were created and the total disparity error for each pixel 

in the two regions was recorded. The average total disparity error for the 100 images according 

to region is given in Table 5.3. 

Algorithm Mean total absolute displacement error 
Dis-occluding Occluding 

region region Total 
HU-30 1054.4 2856.1 3910.5 
WTA 1595.0 3170.4 4765.4 

% improvement 33.9 9.9 17.9 

Table 5.3: Total absolute disparity error statistics for 100 randomly generated images 

These results seem to indicate that for regions in the image which containing dis-occlusions 

there is a 34% improvement in the total disparity error. The gains made by HU-30 over WTA 

are lessened significantly in regions of the image where occlusions occur and gives a mean total 

error which is only a 10% improvement. This improvement is most likely a result of the sub-pixel 

interpolation of the disparities in regions which are unaffected by the boundary. 

5.1.2 Natural Images 

To get an idea of how well HU-30 performs on natural images, two aerial pictures (see Fig. 5.24) 

corresponding to the left and right viewpoints of a set of buildings were used. The disparities 

(which were between 1 and 8 pixels) were obtained from both the WTA and the HU-30 algo­

rithms. The support regions were (13 x 13) pixels. 
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Figure 5.24: Left and right stereo images of U B C image 

U B C Acute Care Hospital scanned from B C Ai r Photos 79046 37-38. Both images are (256x256) 
8-bit pixels. The displacements varied from approximately 2 to 8 pixels. 

From these disparity maps it is apparent that the disparity measures (and hence depth) 

of the HU-30 algorithm are qualitatively superior to that of W T A . This improvement in the 

disparity values is especially apparent near the depth discontinuities in the image. For example, 

the contour of the "hole" of the central building (point A of Fig. 5.24) is much closer to the true 

contour, and contains less smearing effects. This can also be seen by examining the overall shape 

of the building in the lower portion of the image (point C in the image) which is much better 

preserved in the W T A disparity map. In addition, smoothing effects are apparent at point B in 

the image, where, instead of containing two separate disparity values (i.e., the building and the 

ground), the disparities predicted from W T A are a smoothened version of the true step-edge. 
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Figure 5.25: Winner-take-all disparities for Figure 5.26: Neural network disparities for 
UBC image UBC image 

Figure 5.25 and 5.26 give the results of the disparity predictions for both the WTA and HU-30 
algorithms, respectively, for the stereo image pair of Fig. 5.24. The disparities range from zero 
pixels (denoted by white) to 8 pixels (denoted by black). (Note: disparity map is in the left 
image frame-of-reference). 
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Conclusions 

Using the shear values defined from the sum-of-squared-differences of a set of oriented rectilinear 

sub-neighborhoods, the presence and orientation of discontinuities of a flow field can be inferred. 

The orientations were restricted to two possible hypotheses: horizontal and vertical. Tests on 

randomly generated band-limited images indicated that approximately 80% of the points at, or 

near a discontinuity were classified to the correct orientation. 

An artificial neural network was used to integrate the two sources of knowledge, namely the 

cross-correlation values from the different support regions and the discontinuity information 

from the shear values, to produce a single prediction for disparity of the point (binocular 

stereo). The correct representation for the integration task was learned from a set of 25,000 

training examples which were obtained from randomly generated band-limited synthetic images. 

The resulting algorithm compared to the traditional winner-take-all correlation algorithm 

performed significantly better for both synthetic and natural images. Analysis of the confi­

dence intervals showed that the neural network implementation correctly classified ~90% of 

the training patterns to within 1.0 pixels of the true disparity compared to only ~80% using 

the winner-take-all algorithm. 

On synthetic images, constructed by the superposition of randomly generated sinusoids, and 

natural images, the neural network reduced the distortion effects occurring near discontinuities 

and produced object boundaries which were significantly better representations of the object's 

true structure. Smoothing effects near the discontinuities, which smear step-edges in the dis­

parity map, were reduced using the neural network as compared to the winner-take-all strategy. 

Analysis of the outputs of the neural network indicated that the neural network interpolated 
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over the SSD surface and thus produce disparities to sub-pixel accuracy. 

By phrasing the problem of integrating discontinuity and motion information as a learning 

problem, a network is able to capture sufficient information from the input distribution to allow 

reasonable disparity predictions. It has demonstrated that the necessary information needed 

to perform the integration task can be extracted directly from a suitable set of randomly 

generated examples. The performance of the neural network on natural images corroborates 

the hypothesis that sufficient information is available from the synthetic images to allow the 

network to characterize the behaviour of natural images. This indicates that the synthetic 

image model employed is a reasonable approximation to natural images for the purposes of 

learning in low-level visual tasks. 



C h a p t e r 7 

Future Work 

An obvious modification to the present model would be to extend the model to allow the 

determination of optical flow. In theory, since the proposed techniques are equally applicable 

to the problem of optical flow, the only modification which would be necessary is is to change of 

the topology of the neural network. This would involve replacing the one-dimensional array of 

cross-correlation inputs with a two-dimensional matrix of inputs. A similar modification would 

also be necessary for the output units so as to allow for the encoding of a two-dimensional 

output. As was discussed in Chapter 4, this would drastically increase the computational 

complexity of the learning procedure, as well as the number of training examples necessary 

to obtain a good generalization of the inputs. This does not seem feasible using the present 

network model and learning procedure. 

There are a number of possible ways in which we might choose to reduce the complexity 

described above. One possibility might be to attempt to reduce the dimensionality of the data by 

using unsupervised learning techniques such as [BH89, Gro76, San89]. Such techniques could be 

applied in the first layer of the network, and could potentially reduce the number of hidden units 

needed in subsequent layers. In addition to reducing the complexity, there is reason to believe 

that the resulting representation obtained from unsupervised learning procedures is potentially 

easier to interpret [San89]. Further gains in the learning time might also be achievable through 

the use of more sophisticated gradient-descent methods such as conjugate-gradient descent (see 

Chapter 5 of [Str86] for details). 

While the present implementation is limited to predicting one-dimensional motion, this 

model be easily extended to identify depth-discontinuities in the image. While the naive strategy 
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for determining the presence and orientation of discontinuities given by Eq. (3.13) and Eq. (3.14) 

have been shown to work reasonably well, there is reason to believe that the neural network 

should be able to infer this information more accurately. This could be realized by exploiting 

further information about the discontinuities from the error surfaces themselves (for example 

the valleys may become more rounded [BA90]). Much of this information is probably already 

represented in the present neural network since this information is needed for accurate disparity 

predictions. Additional information from the error-surface may also be exploited by the neural 

network to allow the identification of occlusions in the scene (perhaps in a similar manner to 

[LG90]). 

In the future one might want to investigate a number of alternative sets of inputs to the 

network. This would provide additional insights as to the kinds of visual primitives which are 

best suited for the extraction of motion. These might include: 

• The use of Blake and Zisserman's weak continuity constraint. This constraint has the 

effect of weighting heavily the differences which lie within an expected range and remains 

uncommitted about data outside this range [BZ87]. 

• The use of confidence measures on a set of features, such as zero-crossings, rather than 

the raw intensity values [DP86, BLP87]. 

• The use of motion-primitives at multiple scales [Ana89], or the use of more than two 

consecutive images. 

• The use of additional inputs to denote the presence of intensity discontinuities. This may 

greatly improve the localization of disparity discontinuities. 

There are many potential improvements related to the generation of the training patterns. 

These may include the use of polygonal objects containing corners and straight edges. Such 

objects are more likely to correspond to the types of objects which are found in computer 

vision applications. Additionally the use of textures obtained from natural images may greatly 

improve the performance of the the neural network on real vision problems. 

At present there is an asymmetry in the ability to predict displacements near occluding 

and disc-occluding boundaries. This is due to the fact that we are only matching points in 
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the to frame of reference to points in the ti frame of reference. If additional inputs were 

added to the network which encoded the SSD for <j> in the ti frame of reference, then the 

resulting generalization could potentially eliminate the asymmetry, and thus provide accurate 

displacements for both occluding and dis-occluding boundaries. Examples of algorithms which 

use a correlation-based approach in which matching is performed on both time frames can be 

found in [MP76, Fua91, HLLJ91]. 

As was mentioned in Chapter 1, part of the appeal of neural networks is the study of the 

weight-space representation of the trained network. This analysis potentially gives one a better 

understanding of the operation of the neural network, as well as giving new insights to the 

problem at hand. This is potentially very difficult since each hidden unit is combining features 

of several error surfaces, and thus the weight-space is difficult to interpret. This work is ongoing 

and is not presented in this thesis. 

The neural network implementation for the determination of stereo disparity is presently not 

very efficient. The large number of multiplications and the evaluation of the sigmoid function 

make the evaluation of the network unacceptably slow. In addition the computation proceeds 

serially, computing each disparity on a pixel-by-pixel basis. Future work on this project will 

involve the implementation of the neural network on a parallel architecture; specifically a set 

of transputers. This would allow the computation of the cross-correlation measures to be 

computed in parallel, along with the evaluation of the network. Such a parallel implementation 

of the neural network disparity algorithm is crucial to its practical use on real vision problems. 
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